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PREFACE

A large number of books on the subject of dynamics have been written during
the past decades, and therefore, those who venture to add to their numbers
should offer some explanation. Many of these books with engineering orienta-
tion are intended for a first course in dynamics at the undergraduate level.
Some of the books on advanced dynamics have been authored by physicists who
are primarily interested in classical dynamics as a preliminary to studying
particle physics and quantum mechanics.

This book is intended to serve as a text for engineering students at a first
graduate-level course in dynamics. Most of the material can also be used for a
senior-level undergraduate course. Engineers are interested in classical dynamics
primarily for the purpose of obtaining mathematical models of dynamic systems
which are then employed in the analysis of the dynamic behavior and in design
synthesis. This book attempts to combine classical dynamics and methods of
analysis.

For this reason, the book is divided into two parts. Part I is devoted to the
description and illustration of the principles of dynamics which are employed in
the derivation of the equations of motion (i.e., mathematical models of dynamic
systems). Part II covers some of the methods of analysis that can be employed in
the investigation of the dynamic behavior of engineering systems. The emphasis
is on dynamic response and stability of motion.

A brief survey of the contents is as follows. Part I of the book contains
five chapters. Chapter 1 is the introduction, in which the classical dynamic
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concepts of particles and rigid bodies, inertial coordinates, and Newtonian and
Lagrangian dynamics are discussed. Chapter 2 is aimed at kinematics and
includes discussions on various coordinate systems and their transformations.
Chapter 3 presents particle dynamics, including Newton’s laws, and the energy
and momentum methods. Two-body central force motion, and the orbits of
planets and satellities, are also discussed. Chapter 4 deals with the dynamics of
rigid bodies from the Newtonian viewpoint. Chapter 5 presents Lagrangian
dynamics, and includes the principle of virtual work, Hamilton’s principle, the
Lagrangian equations of motion and Euler’s angles for rigid bodies.

Part II of the book consists of four chapters. In Chapter 6, a discussion of
the response of dynamic systems is presented. Chapter 7 deals with the numerical
solution of the equations of motion for a dynamic system. Both implicit and
explicit solution methods are included. In Chapter 8, the theory of linear
vibrations is presented, and both single- and multiple-degree-of-freedom systems
are discussed. Chapter 9 deals with the stability of motion, and stability con-
siderations for both autonomous and nonautonomous systems are presented.

Chapter 8 on linear vibrations is included because it discusses some of the
techniques of linear analysis and also because some students may not have the
opportunity to take a separate course in mechanical vibrations. This chapter
may be omitted depending on the interest and aims of the students. At the
graduate level, all the chapters of Part [ and most of the chapters of Part II could
be covered in a one-semester course. At the senior undergraduate level, all the
chapters of Part I and about two chapters of Part II, such as Chapters 7 and 8§,
would be adequate for a one-semester course, depending on the instructor’s goal.

To gain maximum benefit from the book, the reader should have some
knowledge of elementary dynamics. A working knowledge of calculus, ordinary
differential equations, vector and matrix algebra, and Laplace transformation
is an adequate mathematical background. Vector and/or matrix notation is
employed throughout most of the presentation. The two appendices present
elements of vector and matrix analysis, respectively, for the benefit of those
who need to review this material.

The development of this book has been influenced by several existing
books mentioned in the references. We extend our thanks to our students and
colleagues who have offered constructive criticism and many valuable sugges-
tions. Thanks are also due to Mehran Farahmandpour for his help in preparing
the illustrations. We acknowledge the assistance of the staff’ of Prentice-Hall,
Inc., especially that of Charles lossi, Engineering Editor, and Ellen Denning,
Production Editor. Finally, we are indebted to our wives, Cecilia and Pushpa,
for their support and encouragement.

A. FranK D’Souza
Vuay K. GArRG

INTRODUCTION

1.1 CLASSICAL DYNAMICS OF PARTICLES AND RIGID
BODIES

The a.mmo:u:.:a of dynamics is concerned with the study of motion. In general
two viewpoints may be adopted : microscopic and macroscopic. In our study Om
dynamics, we neglect quantum mechanics effects and employ macroscopic
models. It should be noted that macroscopic models invoke the continuum
Eﬁoﬁnmmm according to which matter is continuously distributed in space
woo:@_oa by a body. The branch of dynamics that employs macroscopic models
1s referred to as classical dynamics, in contrast to quantum mechanics, which
@B@Ev\m microscopic models. Our central aim is to study the classical amszHm
of solid bodies; we do not attempt any investigation of fluid mechanics.

H.z the case of solid bodies, two important approximations can often be
made in .vnmo:om_ applications and a body is then referred to either as a particle
ora :.ma vﬁw&\. When a body does not rotate but only translates, we may
approximate its motion by describing the motion of a single representative point
N». Mﬂa v.o&\. The body is then called a particle and mathematically represented
ﬁm\ v_uo:: mass. Even when a body rotates, especially when the dimensions of
the ody are small compared to the distance it travels, and we are interested only
in :m translation, the rotation may be ignored and the body represented by a
particle. For example, for the study of the orbit of the earth around the sun
the earth’s rotation may be ignored and it may be approximated as a vm:mﬁo.

When a body rotates and this rotation is to be studied, its finite size is Hm
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be considered, but we may still be able to ignore Eo. small deformations m.mmﬁ.m
ciated with its flexibility. The body is then omzwa a rigid vo&\. Hence, for ﬂ rigi
body, the distance between any two of its particles remains mo:mx:: for a .:ME
and for all configurations. As a consequence of m@?ox_ﬂmsnm a body as either
a particle or a rigid body, its motion is described by ordinary a_mmnos:m.: oew,m-
tions with time as an independent variable. On the oEma 3@:.9 Eo motion of a
flexible body is described by partial differential equations with time and space

i s independent variables. . .
oooaﬁﬂwﬂwn a moma body may be accurately represented as a particle, a rigid
body, or a flexible body depends on the purpose of the study. For wxmav_m, to
determine an optimal nominal trajectory, a rocket may be oo.nma.mnoa. as a
particle. For the purpose of guidance and ooa.aor Q:.m approximation 18 HMO
simplistic since the rocket’s attitude and orientation are _Bvo:ma.:, so the Hoowmw
may be approximated as a rigid body. However, the ».anmm. acting on mwﬁoo ma
can produce bending moments. In order to study the Ac.mna_:m of a roc oﬂa an
investigate the stresses, the rocket is considered asa flexible doﬁ.&\. ,;o.cﬂs _Mm-
mode shapes may then be superimposed on the :ma-co&.Bo:o.n. This book is
concerned with the classical dynamics of particles and rigid bodies.

1.2 RELATIVISTIC AND NONRELATIVISTIC DYNAMICS

According to Einstein’s general theory of relativity, also a&..o:oa ﬂo.mm @385 s
gravitational theory, the mass, m, of a body is related to its velocity, v, by the

equation
Mo (1.1
(1 — v /e

where ¢ is the speed of light and m, is the mass of the body at rest when |v| = om.
Our assumption is that the speed, ||, of the body ﬂ much less ﬁrwn.ﬂrm mvmoa. o
light (i.e., _m_AA ¢), and we are concerned only with coam_m:,:m:o.a«:MB_Om.
Consequently, mass is an inherent constant property of a c.o&.mna is in ovom-
dent of its motion or passage of time. However, in nonrelativistic dynamics, the
mass of an open system may change when it gains or loses mass. 13.2852@
the mass of a rocket will change as its fuel is amv_ﬂom, but this change in mass 18
ite distinct from and unrelated to the relativity efiect. .

e Mn nonrelativistic dynamics, Newton’s viewpoint of completely anvo:a.oa
and absolute time and Fuclidean geometry is adopted. Hence, space N.:.a time
are independent. Euclidean space is a normed, linear vector space Emﬂ is roBM-
geneous and isentropic. The metric which is a measure .Om distance is given | w
the norm. The norm or distance between any two points of the space wit
coordinates (xy, ¥1, z;) and (x3, Y2, z,) is defined by

d=[(x; — x2)* + 1 —y)* + (z: — z,)*]/? (1.2)

m =
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Since the space is homogeneous, this distance is invariant of the origin
of the coordinate system and since it is isentropic, the distance is also invariant
of the orientation of the coordinate system. Forces of kinematical nature, such
as Coriolis and centrifugal forces, can be eliminated by employing an inertial
frame of reference, which is discussed later. However, gravitational forces
cannot be eliminated by kinematical transformation in Euclidean space.

In relativistic dynamics, the concept of independent time and space is
discarded in favor of a four-dimensional space-time continuum. A four-
dimensional Riemannian space is employed in which the gravitional forces
disappear. This space is not linear but curved, and its metric is related to the
gravitational mass at every point. This book, then, is restricted to the non-
relativistic, classical dynamics of particles and rigid bodies.

1.3 INERTIAL COORDINATES, KINEMATICS, AND KINETICS

As mentioned earlier, in nonrelativistic dynamics it is assumed that there is an
absolute space, which is Euclidean, and an absolute time, which is independent
of space. A coordinate system must be employed to measure and describe a
motion. It was Galileo who showed that there exist preferred reference systems
for which the acceleration has its simplest possible form. Such a reference frame
is called an inertial coordinate system or Galilean reference frame. The accelera-
tion when measured with respect to inertial coordinates is called absolute
acceleration.

An inertial frame of reference may be defined as a coordinate system that
does not rotate and whose origin is either fixed in space or if it translates, then
is moves in a straight line at a constant velocity. Suppose that there exist two
coordinate systems that do not rotate but translate at a constant velocity with
respect to each other, and one of them is inertial; then the other system is also
inertial.

Suppose that the origin of a coordinate systen is chosen as a point on the
surface of the earth and the coordinate system does not rotate with respect to
the earth. But as the earth rotates, this coordinate system would rotate with it
with respect to fixed space. It would also translate with the earth and not in a
straight line. This coordinate system is then obviously not inertial. But in case
the additional acceleration terms due to the rotation and translation of the
earth, which are obtained in Chapter 2, are negligibly small compared to the
relative acceleration of a body with respect to this coordinate system, no
noticeable error is introduced by assuming that this coordinate system is
inertial. In case the acceleration term due to the rotation of the earth is not
negligible, it may be possible to fix the origin of the coordinate system at the
center of the earth and to fix its orientation in inertial space. Now, if the accel-
eration term due to the translation of the earth is negligiblv small compared to



4 Introduction Chap. 1

the relative acceleration, we can assume that this coordinate system is inertial.
In some cases it may become necessary to choose the center of the sun for the
origin of the coordinate system and its orientation fixed in space in order for it
to be considered as inertial. In other cases, it may become necessary to choose a
distant “fixed” star, such as Canopus, for the origin of the coordinate system.
Hence, it becomes obvious that the concept of an inertial coordinate system is
purely hypothetical, as even the distant “fixed” stars are not really fixed in space.
We treat relative acceleration as absolute when the additional terms due to the
rotation and translation of the coordinate system are negligibly small.

The study of dynamics may be conveniently divided into two parts,
kinematics and kinetics. Kinematics is concerned with the geometry of motion
and deals with relationships among displacement, velocity, acceleration, and
time without any reference to the cause of motion. On the other hand, kinetics
deals with relationships among forces, mass, and motion of the body. It is
concerned with the cause of motion. Chapter 2 is devoted exclusively to the
study of kinematics, and some discussion of kinematics of rigid bodies is also
given in Chapter 4.

1.4 NEWTONIAN DYNAMICS

The fundamental ideas of classical dynamics have been developed over a number
of years. These developments fall into two classes, Newtonian dynamics and
Lagrangian dynamics. The development of Newtonian dynamics began with
Galileo, who introduced the concept of acceleration and stated his law of
inertia. The inertia of a body is its resistance to a change in its uniform motion.
The mass of the body is used as the quantitative measure of inertia. The concept
of an inertial frame of reference was also recognized by Galileo. Later, in 1687,
Newton formulated his three laws for single particles and his law of gravitation.
Euler extended these concepts to the study of dynamics of rigid bodies. The
branch of classical dynamics based on direct application of Newton’s laws is
called Newtonian dynamics. Newtonian dynamics is studied in Chapter 3 for
a system of particles and in Chapter 4 for rigid bodies. The first two laws of
motion have been stated by Newton for a single particle. Newton’s laws are
discussed in the following.

Newton’s first law. If there are no forces acting on a particle, the
particle will remain at rest, if originally at rest, or will move in a straight line at
constant <o_oo:<. if originally in motion.

Let F be the resultant force acting on a particle and v be its velocity vector
measured with respect to an inertial coordinate system. Newton’s first law can
be stated mathematically as:

If F = 0, then v = constant (1.3)

where a special value of the constant may be zero.

Sec. 1.4 Newtonian Dynamics 5

Newton’s second law. If the resultant force acting on a particle is
not zero, the particle will move so that the resultant force vector is equal to the
time rate of owm—zmo of the linear momentum vector.

Letting F' be the resultant force acting on a particle, v its velocity, and m
its mass, Newton’s second law can be stated as

F =2 () (1.4)

where v is measured with respect to an inertial coordinate system. Neglecting
relativistic effects and not including those particles of an open system that
may gain or lose mass, the value of mass does not depend on time and (1.4) can
be written as
» dv
F=m%
" dt

= ma (1.5)
where a is the absolute acceleration which is measured with respect to an
inertial coordinate system. Hence, it is seen from (1.5) that Newton’s second
law may be expressed alternatively as follows: If the resultant force acting on a
particle is not zero, the particle will have an acceleration proportional to the
magnitude of the resultant force and in the direction of this force.

Newton’s third law. When two particles exert forces on one another,
the forces lie along the line joining the particles and the force vectors are the
negative of each other.

Hence, when a force exerted on a particle is the result of an interaction
with another particle, the forces of action and reaction are equal in magnitude,
opposite in direction, and collinear.

Let F, ; be the force exerted on the ith particle by the jth particle and F
be vice versa. Then, according to Newton’s third law,

Fy=—F; (1.6)

Newton’s law of gravitation. This law states that two particles of
mass, m, and m,, mutually attract each other with equal and opposite forces, F
and — F, whose magnitude

Gmm
where r is the distance between the two particles, and G is a universal constant

called the constant of gravitation. The direction of the force is m_o:m the line
joining the two particles, as shown in Fig. 1.1.

. In formulating his first two laws of motion, Newton was undoubtedly
_Jncosooa by Galileo and in formulating his law of gravitation by Kepler. In
his turn, Kepler formulated his laws of planetary motion from observations of



6 Introduction Chap. 1

=

m
_ Figure 1.1 Newton's law of gravitation.

the orbits of planets around the sun. Newton’s three laws of motion, together
with his law of gravitation, form the basis of Newtonian dynamics. They are
valid for most engineering applications where the speeds encountered are much
smaller than the speed of light. However, there are some exceptions where
relativistic dynamics must be employed. For example, electromagnetic forces
between moving particles do not follow Newton’s third law. Also, the motion
of certain planets, such as the anomalous motion of the perihelion of Mercury,
can be explained by the general theory of relativity.

1.5 LAGRANGIAN DYNAMICS

The second approach to the formulation of the equations of motion is known as
Lagrangian dynamics and is also referred to as analytical mechanics. It was
developed about a hundred years after Newton formulated his laws. Lagrangian
dynamics requires the concept of virtual displacement and it is formulated by
Lagrange’s equations of motion by employing kinetic energy and work. The
introduction of generalized coordinates instead of the physical coordinates
makes the method very versatile. The equations of motion are derived from
Hamilton’s principle, which is a variational principle and leads to the extremiza-
tion of a functional.

These techniques have their roots in the development of the calculus of
variations by Bernoulli, Euler, and others. Hamilton’s concept of regarding the
generalized coordinates and the generalized momenta as independent canonical
variables led him to transform Lagrange’s equations of motion, which are
second order in the generalized coordinates to a set of first-order equations in
the canonical variables. The study of Lagrangian dynamics is covered in
Chapter 5.

1.6 SUMMARY

The major aim of this chapter has been to outline the scope of the book and to
state certain classifications and definitions. This study is restricted to non-
relativistic classical dynamics of particles and rigid bodies. First, classical
dynamics is defined as that branch of dynamics that employs macroscopic
models, in contrast to quantum ivechanics, where microscopic models are
employed. In many practical applications, a solid body may be approximated as

Chap. 1 References 7

a particle or a rigid body. Since we deal only with nonrelativistic dynamics,
space and time are assumed to be independent and Euclidean space is employed.
Inertial coordinates are defined and Newtonian and Lagrangian dynamics is
discussed.
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KINEMATICS

2.1 INTRODUCTION

This chapter is concerned with kinematics and deals with the geometry of
motion, including the use of various coordinate systems and the study of rela-
tionships among displacement, velocity, acceleration, and time. The cause of
motion is not considered in this chapter but will be studied in later chapters
dealing with the kinetics of motion. The choice of an appropriate coordinate
system is very important from the point of view of obtaining the equations of
motion in as simple a form as possible.

The acceleration has a simple form when it is expressed in terms of an
inertial coordinate system. However, in many applications, it is much more
convenient to employ a noninertial coordinate system. For example, in the
study of the orbit of one particle around another in the two-body central force
problem, the motion takes place in a plane and the equations of motion take
on a simple form when a polar coordinate system is employed. In the study of
motion of a rigid body, it will be observed that it is more convenient to employ
a noninertial coordinate system fixed to the rotating and translating body because
the mass moments of inertia remain time invariant with respect to such a
coordinate system.

In this chapter we first discuss the use of various coordinate systems,
including Cartesian, tangential and normal, and polar coordinates. Then the
transformation is studied between two sets of coordinate systems, where one

Sec. 2.2 Inertial Cartesian Coordinate System 9

set is rotated with respect to the other. The motion is then expressed in terms
of translating and rotating system of coordinates.

2.2 INERTIAL CARTESIAN COORDINATE SYSTEM

We consider a coordinate system xyz whose origin O is fixed and the coor-
dinate axes do not rotate. It was discussed in Chapter 1 that such an inertial
coordinate system is only hypothetical. As shown in Fig. 2.1, the position vector
of a particle P at time ¢ is denoted by the vector 2 joining the origin O and
point P,

s

=

Figure 2.1 Inertial Cartesian coordinate system.

Resolving the position vector 7 of the particle into rectangular compo-
nents, we get

r(t) = x(6)i + ()] + 2(0)k @.1)

where w‘ Mu and k are unit vectors as shown in Fig. 2.1 and the coordinates x, y,
and z are functions of time. Differentiating (2.1) once the velocity vector is given
by )

=N dr e L= .7

o) =L = %1 +3j + 22)

since the vectors i, j, and k are fixed in magnitude and direction and hence

0

dr — dr

di _dj _dk _
dt



10 Kinematics Chap. 2

In (2.2), a dot over a symbol denotes the first derivative with respect to time ¢.
Differentiating (2.2) once more, the acceleration is obtained as

dv

-.|r N-
T x~+w\+nw 2.3)

a=
where %, 7, and Z denote the second derivatives with respect to t. Hence, we
note that the acceleration assumes a simple form when expressed in terms of
an inertial coordinate system. In many applications, the motion of the particle
cannot be considered separately along the x, y, and z directions, respectively,
on account of the coupling caused by the forces.

2.3 MOTION RELATIVE TO A FRAME IN TRANSLATION

We now employ a coordinate system that is in translation without rotation with
respect to an inertial coordinate system. In Fig. 2.2, let Oxyz be an inertial
coordinate system whose origin O is fixed. Let O,x, y,z, be a coordinate system
iromo origin O, has a motion whose velocity and acceleration are denoted by
e. and a, respectively. The axes Ox,, O,y,, and O,z, always remain parallel
to the axes Ox, Oy, and Oz, respectively; that is, the axes O, x, y,z, do not change
their orientation.

Noting that the position vector 7 » of particle P with respect to xyz is the
sum of the position vector wE_ of P with respect to x,y,z, and the position

Z;

mu

%

0y

o

Figure 2.2 Coordinate system O1x;y1z; in translation.

Sec. 2.3 Motion Relative to a Frame in Translation 11

vector u_ of O, we get
Fpo= Tty + 4 (2.4)

Differentiating (2.4) with respect to time, the velocity e and acceleration
n are given, respectively, by

Vv, =1, § + :
eui + Q_ ANMV
and
A, = v, = Uy + ¥,
=a,: + a, (2.6)
The motion with respect to an inertial coordinate system is called the
absolute motion. Equation (2.6) expresses that the absolute acceleration of P
may be obtained by adding vectorially the acceleration a,,; of P relative to
frame x, y,z, and the acceleration a, of the origin O, of frame x,y,z,. Equation
(2.5) may also be given similar interpretation concerning velocities.
Example 2.1

A motor boat has a speed of 3 m/s with respect to a river that is flowing east at a con-
stant speed of 2 m/s. The boat desires to follow a straight path from point C to point
D, where CD is 20° east of north (Fig. 2.3). Determine the absolute velocity of the boat
and the direction of its relative velocity with respect to the river.

4 )

<

Phabibiibbbd

Figure 2.3 Boat crossing a river.

In this case, the boat has plane motion. Let xyz be an inertial coordinate system
iroma o:mE O is fixed. The origin of the coordinate system x,y,z; has a velocity
vy =27 B\m (i.e., the velocity of the river), and its orientation remains fixed. The
velocity o, of the boat with respect to xyz must be directed along CD: that is,

vy = wp(sin 20°7 + cos 20°) -

Let the velocity v,,; of the boat with respect to x; y;z; (i.e., the relative velocity of boat
with respect to the river) make an angle B to the y direction as shown in Fig. 2.3. Then,
from (2.5), we get

vy = vy + vy
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That is,
vy (5in 20°7 + cos 20°7) = 3 (—sin B7 + cos Bj) + 27

Equating the coefficients of 7 and j in the foregoing equation, we obtain
vp8in 20° = —3sin f + 2 and v, cos20° =3cos B
Eliminating angle § from the foregoing two equations, we get
vt — 13680, — 5 =0

that is, v, = 3.022 m/s or —1.6543 m/s.

The admissible value of the absolute velocity of the boat is v, = 3.022 m/s and
it is directed along CD. With this value of v,, we find that the angle which the relative
velocity makes with the y direction as shown in Fig. 2.3 is f = 18.79°.

2.4 TANGENTIAL AND NORMAL COORDINATES

The velocity of a particle is a vector tangent to its path. Sometimes, it is conve-
nient to express the acceleration in terms of its components directed along the
tangent and normal to the path, respectively. Figure 2.4(a) shows the path of
a particle in space. At time ¢ when the particle is at 4, let i (¢) be a unit vector
tangent to the path at 4 and pointing in the direction of motion. The velocity
of the particle at that instant of time may be expressed as

-

m — Qm» AN.QV

(a)

Figure 2.4 Tangential and normal coordinate system.
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Differentiating (2.7) once with respect to ¢, the acceleration is given by

dv &e n
dr —

It is noted that the magnitude of ? is E:Q and it remains constant but its direc-
tion changes with time and in the following we obtain an expression for &.N.,N\&N
that appears in (2.8). At time ¢ + At, let the particle be at position B and

AN - At) be the unit vector tangent to the path corresponding to that position,
as shown in Fig. 2.4(a). It may be observed from Fig. 2.4(b) that

10+ Ar) =140+ (AT 0) 2.9

where A is the angle between the two unit tangent vectors, and .~.,.. is a unit
vector along the principal normal to the path. Hence, we get

lr

a —=

(2.8)

di, . i0+A) =00 Af 5
dt wmw At o me At (2.10)
Letting As denote the change in the path length, we have
di, dfds=
F A dr i, .11

But ds/dt = v and df/ds is equal to 1/p, where p is the radius of curvature of the
path at 4 as shown in Fig. 2.4, with C being the instantaneous center of curva-
ture. Hence, we obtain

(2.12)

and (2.8) may be written as

a— %J;ZIJ (2.13)

The tangential component of the acceleration may be positive or negative;
that is, it may point in the direction of motion or against the direction of motion,
depending on the sign of dv/dt. The normal component of the acceleration is
directed toward the instantaneous center of curvature of the path. In plane
motion there is only one straight line perpendicular to the tangent at a given
point of the path, whereas in three-dimensional motion there is _an infinite
number of such straight lines. In the latter case, the unit vector i, is in the
direction of the principal normal at a given point of the path. Consider a plane
at point 4 in Fig. 2.4 containing the tangent to the curve at 4 and parallel to
the tangent to the curve at B. As point B approaches 4, this plane is called the
osculating plane at 4. The principal normal lies in the osculating plane and is
vnavga_g_ma to the tangent. The binormal at 4 is perpendicular to the osculat-
ing plane ; mﬂ A and a unit vector i, in that direction completes the right-hand
triad 7 » L and :. However, the acceleration has no component along the
binormal.
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Example 2.2

A grinding wheel of outside radius r, is attached to the shaft of an electric motor (Fig.
2.5). At time ¢, the angular velocity of the motor is W.(¢) and its angular acceleration
is 0t{t) = . Determine the acceleration of a point on the circumference of the
wheel at time ¢.

wp(t)

‘/Q—jﬁqv o

r _ (b}

(a)
Figure 2.5 Grinding wheel.

It should be noted that a point P on the circumference of the wheel has plane
motion and the instantaneous center of curvature remains fixed at the center of the
shaft. At time ¢, the velocity of a point P on the circumference of the wheel is given by

Vp = Wyt,

dvy, _
dt

Substituting this result in (2.13), the acceleration of P is given by

&3‘0 = Q‘—\U

-

- + 2 0
a, = 0pt,i, + Qnr,i,

Example 2.3

A train is traveling along a curve of radius r,. At time ¢, its speed is »(¢). Determine
the maximum rate at which the speed may be decreased at that time if the total accelera-
tion of the train is not to exceed 0.2g.

We note that for this problem it is convenient to employ tangential and normal
coordinate system. Employing (2.13), we obtain

&GVN A@nVN
2 — {27 =
4 A& + P
Here, we have am,x = 0.2¢ and p = r,. Hence, it follows that the maximum
rate at which the speed may be decreased is given by

max gy = 0207 — ()"

Example 2.4

A block of mass m;, is constrained to move on a straight bar AB. A mass m, is sus-
pended from mass m; and is free to move about the pivot O, as shown in Fig. 2.6.
Determine the acceleration of mass m,.

Sec. 2.5 Polar and Cylindrical Coordinates 15

——

x4

0.

m

Mo
Figure 2.6 Motion of masses m and m,.

By employing (2.6), the absolute acceleration mN of mass m, may be written as
MN = NN\ 1 l_l m-

where a 1 is the mmoo_oamzo: of my and MN /1 is the acceleration of mass m, relative to
mass m;. Now, a; = X7 and a,,; can be expressed in terms of its components in the
tangential and normal directions. Hence, employing (2.6) and (2.13), we obtain

N dv

&:._' MNJ_.TRN

Since, v = mh‘ dv/dt = w.h, and p = L, the foregoing equation can be written as
a,=0L7, + 02L7, + %7

This problem is considered again in Example 2.9 by employing a translating and
rotating coordinate system.

2.5 POLAR AND CYLINDRICAL COORDINATES
2.5.1 Plane Motion

We first consider plane motion where it is convenient to represent the
position of a particle cw means of its polar coordinates, r and 8, as shown in
Fig. 2.7(a). Let i, and i, be two unijt vectors at A in the radial and transverse
directions, Rmvooﬁ:&_w As the particle moves from A4 to B, the magnitudes of
the unit vector i,and i,remain constant at unity but their directions change to

~Q -+ At?) and ;Q -+ At) with time Az as shown in Fig.2.7(a). First, we obtain
expressions for the time rate of change of these unit vectors. From Fig. 2.7(b)
it can be seen that

Tt + A = 1,(1) F (A)(1)T4(0) (2.14)
ot + Ar) = T40) — (AG)1)7,(2) (2.15)
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ir(t+at)

(1)

Ind
ip(t4at)

ig(t4at)
> ﬂ:\
(a) (b)
Figure 2.7 Polar coordinates.
Using these results, we obtain

di, _ it A) =T . A0
dt wmw At w_IBo ar'

— i, (2.16)
&: — lim Tt + >e — 0 — lim — A8 A 2
dr Ar—0 A0 At '

= l?ﬁ (2.17)

Expressing the position vector rofa particle as the product of scalar r and the
unit vector i,, we obtain

F=ri, (2.18)

Differentiating (2.18) with respect to # and using (2.16), the velocity is given by
D=1 —Fi, + KM\

=i, + 01, (2.19)

Differentiating (2.19) with respect to ¢t and employing (2.16) and (2.17), the accel-
eration is obtained as

= .di A2 i di
a=Fi, 4+ F &Mu - Fli, - rfi, +- xm%
= (F — r0d)i, + (8 + 270)7, (2.20)
A circular motion is a special case where # = 0 and in this case it follows
that R .
v=rbli, (2.21)
a= |xmp.~.ﬂ + xw.m.,e (2.22)

2.5.2 Three-Dimensional Motion

In some applications it is advantageous to employ cylindrical coordinates
to represent the motion of a particle. Let R, 8, and z be the cylindrical coordi-
nates and i z,i4, and k be the unit vectors in their respective directions as shown

Sec. 2.5 Polar and Cylindrical Coordinates 17

ﬂ —
fo
P
v _ -
LN
L
¥
0N b
> iZk
0 RNCT
//_m |
N ]
A
N
N
Figure 2.8 Cylindrical coordinate X
system.
in Fig. 2.8. The position of the particle is expressed as
= Rij -+ zk (2.23)

and employing the results obtained in the foregoing, the velocity and acceleration
are given by

— x;+§:+% (2.24)
— v— (R — RO?)i, + (RO + 2RE)T, + 3k (2.25)

Qb @l

Example 2.5

A mechanism is shown in Fig. 2.9, where a slotted rod OA4 rotates about O with dis-
placement 8 = ¢ sin wr. A slider S is constrained to move in the slot and along a curve
BCD whose equation is given by r = a/(1 + 8). Determine the velocity and accelera-
tion of slider S at any instant of time .

Figure 2.9 Slider mechanism.
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We note that the slider has plane motion and that it is advantageous to employ
polar coordinates for this problem. Expressing r as a function of time, we have

a
) "ZT¥csinor
Hence, we obtain
; — _—caw cos wt
(1 + csin wr)z
caw? . .
~dT Tesn @1y (sin Wt + ¢sin? Wt + 2ccos? wt)
Also, we have 8 = ca cos wr and § = —cw? sin wr. Substituting these results

in (2.19), the velocity of the slider is given by

5(1) = —caw cos Wt I acw cos Wt 7o
0 Fesinw)E' " T1 Fesinawe’

Substitution of the foregoing expressions in (2.20) yields the acceleration of the slider
as

= _HnNQSNHC\& sin Wt + sin?2 Wt + 2 cos? W] c*aw? cos? 8@ >
— N r

a
(1 + csinwt)3 1 + ¢sin wt
+ ﬁlnaen sin ¢ + —2c2aw? cos? Wt »
T + ¢ sin oot (I + ¢ sin w?)? ;:

2.6 ROTATIONAL TRANSFORMATION OF COORDINATES

We consider two Cartesian sets of axis Oxyz and Ox,y:z, which are rotated
with respect to each other as shown in Fig. 2.10. A vector r may be decomposed
using each of the coordinate systems as

Figure 2.10 Rotating coordinate sys-
1 tem QT«C\_NT

Sec. 2.6 Rotational Transformation of Coordinates 19

F=xi+yj+ zk (2.26)
r=x0,+ i+ 21k, (2.27)
Taking the scalar product of both (2.26) and (2.27) with w: we obtain
xo=x( ) +yG T+ 2k Ty
= x cos (x, x;) + ycos (¥, x,) + zcos (z, x,)
=Cix + Cyy + Cipz (2.28)

where C,,;, Cy;, and C;,, are the direction cosines between axes x, and x, x,
and y, and x, and z, respectively. Similarly, it follows that

Y= G\_TN l_l G\Qb\ l_l Q\.\«N AN.NOV
2y = Ceux + Cryy + Cruz (2.30)

Equations (2.28), (2.29), and (2.30) may be written in the matrix notation as

X1 X
yip =I[CKYy (2.31)
z, z

Expressing X, y, and z in terms of the components along the x;, y, and z, axis,
we obtain

=

X1
y ¢ =I[CI"{y (2.32)

z z4
where the superscript T denotes the matrix transpose. Hence, it is noted that
[CT=[C)F (2.33)

that is, the inverse of matrix [C] is its transpose and such a matrix is called an
orthogonal matrix. Furthermore, from matrix algebra, the determinant of a
product of two matrices is equal to the product of the determinants of the two
matrices and we obtain

I[CICT | = |[CHIICT | = [ 11| (234

But the determinant of an identity matrix is unity and the determinant of
a transposed matrix is equal to the determinant of the matrix. Hence, it follows
from (2.34) that |[C]|* = 1; that is, the determinant of [C] may assume the value
+1 or —1. The value of +1 is chosen in order to transform a right-hand triad
into another right-hand triad, and matrix [C]is an orthonormal matrix. It should
be noted, of course, that the transformation considered here is only a rotational
transformation between two sets of rectangular axes and is a special case of
coordinate transformations.
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Figure 2.12 Rotation of body about inertial axes.

the z axis. It can be seen that the final orientations of the rotated body are not the same
in cases (a) and (b). Here, the order of rotation is very important.

Example 2.7
This example considers the motion of an airplane. The inertial axes system xyz is fixed
in space. Axes x;y;z; constitute a body coordinate system whose origin O, is the

center of mass of the plane and which yaws, pitches, and rolls with the plane (Fig. 2.13).
Z

=}

(a) (b)

Figure 2.13 Airplane body coordinate system x1y1z1.

22
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Hvo..<o_00:< of the plane at time f, as observed with the xyz coordinate system, is given
by v(t) = vl + 0,7 1 v.k. If this velocity is also resolved in the body oo,oaiﬁo
system as v(t) = v,,iy + v, J; + S_m: determine the components Vxys Vy,, and vy, In
terms of the components v,, v,, and v,. v "
duo yaw of the plane takes place as a rotation of the plane about the z axis as
shown in Fig. 2.14. The system ¢&;&,&,; yaws with the plane through the yaw angle ¥
about the z axis. The transformation of vectors between the xyz and &,{,&; coor-

dinate systems is given by -~
& cos f\ siny 07 ( x
Eap =| —siny cosy 0!y (2.41)
¢s 0 0 1)1z
x cosy —siny 07 (&,
y¢ =|siny cosy 0(:¢, (2.42)
z 0 0 1]1{&,
z i < z

Figure 2.14 Yaw rotation.

The pitch of the plane is shown in Fig. 2.15 as a rotation § about the &, axis. The
n.o».o_.oboo ».._.mBo 1172115 translates, yaws, and pitches with the plane. The transforma-
tion equations between m _mpm 3 and 1111213 coordinate systems are ) [

m cosf 0 Iwmz\m/df_, , ﬁ
N0 =| O 1 0 ) 2 ]
73 sinff 0 cosf &

The roll of the plane is defined in Fig. 2.16 as a rotation about the 111 axis through
angle ¢. The x, y,z, frame is then fixed to the plane and it translates, yaws, pitches,
and R.V:w with the plane. The transformation equations between #,#,#7; and x,y,z,
coordinates are given by M 7 o

.X._ H O O NN_ oz N i
Yipg=|0 cos ¢ sing |{n, (2.44)
z, 0 -—sing cosd ||z,

be Hence, the transformation equation between xyz and x,y;z; coordinate system
comes e

-
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Figure 2.15 Pitch rotation.

Figure 2.16 Roll rotation.

yip =[Cl{»
Zq V4
where the [C] matrix is obtained from (2.41), (2.43), and (2.44) as
1 0 0 cosf@ 0 —sinf cosy siny O

[C1=|0 cos¢ sing 0 1 0 —siny  cosy 0 (245
0 —sing cos¢ || sind 0 cosf 0 0 1
The desired velocity components can now be obtained from the equation
Uy, Vy
vy, ¢ = [Clqv, (2.46)
Vg Uz

Again, it should be emphasized that the order in which the rotations are defined is
very important in combining the transformation equations.

2.7.1 Infinitesimal Rotations and Angular Velocity Vector

While finite angles of rotation cannot be represented by vectors, we now
show that infinitesimal rotations can be represented in that manner. For infini-
tesimal rotation through angle A8, we let cos A@ = 1 and sin A§ = Afas A —

Sec. 2.7 Rotating Coordinate Systems 25

0. Thus for infinitesimal rotations, the transformation matrices [C,], [C,], and
[C;] defined by (2.37), (2.38), and (2.39) respectively, can be represented by

m 0 0
[C.A8)] =0 1 A, (2.47)
0 —A9, 1 |
F1 0 —A8,
[CxA8)]=| 0 1 0 (2.48)
A6, 0 1 |
T 1 A, O]
[C(A8)] = | —AB, 1 0 (2.49)
0 0 1

In (2.47), (2.48), and (2.49) only the first-order terms in A@, have been

retained. It can be easily shown that

[C]= HQMADPVHHQNADQNEHQ_ADQ_VH
| AB, —AG,
=|—A#b, | Af, | + O[(A6)Y (2.50)
AB, —A8, |

where O[(A8)*] denotes terms of second or higher order. If these terms are
neglected as A@ — 0, then in this special case of infinitesimal rotations, the
matrix multiplication commutes and the order of multiplication becomes
immaterial. In this case, the rotations can be represented by a vector A8 as
shown in Fig. 2.17. Our main interest is in representing angular velocities by

vectors. The angular velocity vector ® of the rotating frame x, y,z, with respect
to the fixed frame xyz is given by

—

= A§
W= wﬁ. A7 (2.51)

The direction of the vector @ is along the instantaneous axis of rotation of
the frame x, y,z, with respect to the fixed frame xyz. This angular velocity vector
can be decomposed into components along the axes of x, y,z, in the form

O =0l +w,], + o,k (2.52)

where the components are given by

— N Dmkn

@ = lim = ]

@,; = lim >N“_ (2.53)
— 1y D%N_

@1 = wxao At
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2y

Y

l¢]

m:+ at)

Xy

Figure 2.17 Infinitesimal rotation.

As the frame x, y,z, rotates, the unit vectors i, w: and k, change their
directions with respect to the fixed frame xyz. The angular displacement AG
which carries (), j,(¢), and k (?) into i _Q + Ap), j _Q + At), and k (t + A1),
respectively, can be represented by using the rotation matrix [C] of (2.50) as

it + A9 i(1)
J1(t + Aty = [C(AB)]4 jr(D) (2.54)
kit + A ka(?)
Hence, we obtain
Ay L+ A — i (D)
At At
Aj | _ )i+ A)— (@)
At At
Ak, ki(t+AD)—k, @)
At At
iy(2)
_ 5%le 1 o +Q|:$E (2.55)
ki(2)

In the limit as A8 and At both tend to zero, the remainder vanishes and we
get
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@ -0 (O .1|
dt ,
I
dj .
Yid=| 0, 0 o, (2.56)
dk, o
&N _ 8.: — 0y O _

Using this skew-symmetric matrix [w], (2.56) can be represented as

di,
dt :
3
di, | .
72 [w] 41 (2.57)
dky r
dt

Alternatively, using the vector notation, (2.57) may be represented as

%H&xﬂ
djs _ 3w
TR X ji (2.58)
de, =~ _ 7
ﬂ\exw_

We now consider a vector r(¢), which is expressed in the x; y,z, coordinate
system as

MHR_M_ +.§.|\u_ +N_M_ (2.59)

Differentiating this vector with respect to ¢z, we obtain

WHT.SM_ +.w.:.|\,._+M_ML+_HR_$+E_&\_+N_ Aw.aov

Employing (2.58) in (2.60), the latter equation can be expressed as

= (Nays, + @ X (P, .61)

In the foregoing equation, the subscript denotes that the vector has been
expressed in terms of the x, y,z, coordinate system. The first term on the right-
hand side of (2.61) denotes the rate of change of 7 relative to the system x, y,z,
and the second term is the rate of change of 7 caused by the rotational motion
of x, y,z,. Hence, when a vector is expressed in terms of a rotating coordinate
system, (2.61) provides the rule of obtaining its derivative with respect to time.
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2.8 MOTION IN TERMS OF TRANSLATING AND
ROTATING FRAME

The result developed in the preceding section is now employed for the determina-
tion of expressions for the velocity and acceleration of a particle whose position
vector is expressed in terms of a coordinate system that is translating and
rotating with time.

In Fig. 2.18, xpz is an inertial coordinate system whose origin O is fixed.
The system x;y,z, Totates at an angular velocity vector @ and its origin O, has
velocity v; and acceleration a, with respect to the inertial coordinate system. Let
vector r denote the position of a particle P relative to the x,y,z, coordinate
system; that is,

MHVDM.._ |Tv:w~ +N~m~ (2.62)

X

Figure 2.18 Translating and rotating coordinates O1x1y121.

However, the position of P with respect to xyz coordinate system is
given by
(Daye =11+ 7 (2.63)
where N denotes the position of the origin O, of the x, y,z, frame with respect
to xyz. The absolute velocity of P with respect to the inertial coordinate system
is obtained by differentiating (2.63) with respect to ¢ as

= +rtaeoxr (2.64)
where it should be noted that 7 has been expressed in terms of the x;y,z,

coordinate system and is given by (2.62). In (2.64), the first term on the right-hand
side is the velocity of the origin O, of x,y,z,, the second term is the velocity
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relative to x, y,z,, and the third term is the velocity due to rotational motion of
x,y1z, and is the velocity of a point coinciding with P instantaneously. The last
two terms have been obtained by employing the rule given by (2.61). Employing
this same rule, the absolute acceleration of P with respect to the inertial coordi-
nate system xyz is obtained as

mHm+%+&xy+&xﬂ+@x@xﬂ
+8v:+8erx£
n._. +NSXx+exx+exA8xc (2.65)

where again it should be noted that vector 7 has been expressed with respect to
the x, 3z, ooo&Emg system. In (2.65), P is the mooo_onm:oc of %o origin O,
of x,y,z,, r is the acceleration of P relative to X1 V124, 2 X r is called the
Coriolis acceleration, and @ X 7 + @ X AS X ) is the acceleration of the
point that at that instant of time coincides with P. The last term @ X (@ X r)
is called the centripetal acceleration and is directed toward the instantaneous
axis of rotation.

Hence, (2.64) and (2.65) give the absolute velocity and absolute accelera-
tion, respectively, with respect to an inertial frame of a particle whose motion is
observed with respect to a translating and rotating coordinate system. In case
the coordinate system x,y,z, has only rotational motion without translation
(i.e., its origin O, is fixed with respect to an inertial frame), then we set 2, =0
and a, = 0in (2.64) and (2.65), respectively.

Example 2.8

In some applications, the dynamic loads acting on mechanisms and structures due to
inertia forces are much greater than the statically applied loads. We consider a mech-
anism shown in Fig. 2.19. The two arms, each carrying a load W at its end, rotate in
the xy plane about the z axis, which is vertical. The weight of each arm is w per unit
length. Determine the maximum shear force and maximum bending moment in the
arms.

Coordinate system xyz is inertial with origin at 0. We employ a body coordinate

Figure 2.19 Rotating mechanism.
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system X1 Y121 which rotates with the body about the z or z, axis with angular velocity
@ = Wk, and has the same fixed origin O. Hence, in (2.65) we have

Q—“O. \”Ou \“O

~p

r=ri,,

and that equation is simplified to

= -

A= X7 +oX(@X7)
= Wk, X:._.T.\.\m_ X@.\mn X riy)
=yrj, - yiri, (2.66)

Now, an inertia force is the product of mass and acceleration and is in a direction
opposite to that of the acceleration. Hence, the inertia forces acting on weight W,
located along the positive x, axis, due to the acceleration of (2.66) are shown in Fig.
2.20(a). We employ the usual sign convention employed in strength of materials
courses for the shear force and bending moment, as shown in Fig. 2.20(b). We first
consider the x, y; plane and shear force and bending moment caused by the inertia
forces. Only the component of the inertia force in the y, direction causes the shear
force and bending moment in the arms. The component in the x, direction is the
normal force. The shear force due to inertia force on W is given by

Ve = J1 W wa+ L+ b (2.67)

Shear Force

2 (a+L+b) + 1 — ,AJ_é

al€
<

S\
9 Ao+r+3 Bending Moment

(a) (b)

Figure 2.20 (a) Inertia forces; (b) shear force and bending moment.

The shear force due to inertia force on the arm is

This shear force is maximum when r = a and is given by

>

max V,,, = ji NIM W(QaL + L2) (2.68)
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Combining (2.67) and (2.68), the maximum shear force in the arm due to inertia forces
becomes

max V,, = J, m\ Wa+L+b+ NIM W(2aL + h& (2.69)

The maximum bending moments due to inertia forces on W and the arm are given,
respectively, by

M., =~k L@+ L+ 5L+ 2.70)

and

M, = —Fk %_; AW&%YQ —a)

— R, .w.% ﬁhﬁ — £ QaL + LY | @.E

Hence, the maximum bending moment in the arm due to the inertia forces is obtained
by adding (2.70) and (2.71) as

max M,, — —Fk, m\ﬁe YL+ B +B)+ .\MEAFWHI& ~ 2 @aL +$Z

2.72)

Now we consider the x;z; plane and shear force and bending moment caused by
statically applied loads due to the own weights as shown in Fig. 2.21.

7

(Pl
T
O—-

L

w
Figure 2.21 View of mechanism in the x1z; plane.

The maximum shear force and bending moment due to the own weight are
given, respectively, by

max V,, = k(W + wL) - (2.73a)
and
max My, = —7: [ WL + b) + i.ld (2.73b)
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The total maximum shear force and bending moment in the arms are obtained by
combining (2.69) and (2.73a), and (2.72) and (2.73b), respectively, as

max ¥ = J, ﬁm\ee + L+ b) + 52 PQal + )| +EW+wh) @74

max M = |\¢%§h+s+mwld lm%mlwia + L +b)(L +b)

.. w ((a+ L) —ad a
i *+ ~ 5 QaL + 5: (2.74b)

It can be seen that if the weights are small and the value of acceleration is high, the
dynamic loads become much bigger than the static loads. In the theory of linear elas-
ticity, the normal and shear stresses can be obtained by considering the loads sepa-
rately, including the axial load, and then employing superposition.

Example 2.9

A block of mass m, is constrained to move on a straight bar AB. A mass m, is sus-
pended from mass m, and is free to move about the pivot O, as shown in Fig. 2.22(a).
Determine the acceleration of mass m,. The problem was considered in Example 2.4
by employing tangential and normal coordinates. In this example, we employ a trans-
lating and rotating coordinate system.

In Fig. 2.22(b), xyz is an inertial coordinate system whose origin is fixed at O.
The origin of x,y,z, is at the moving point O, and the frame rotates about the y; or
y axis along with the mass m,. The angular velocity of frame x, y;z is given by w =
[ 7 1. The acceleration of m;, is obtained by employing (2.65). We note that

- L= - N KN
a, = X1, r = —Lk,, r =20, r=0

Hence, letting mn be the acceleration of mass m,, (2.65) yields
Ay =iT +@OXF+® X (@ X7

=57 + 07 < (—Lk;)) + 07, x 7% — Lky)
7 —@LT, + 62LE, (2.75)

I

In the foregoing equation, the first term is expressed in terms of the xyz coordinate
system, whereas the second and third terms are expressed in the x; y;z; system. The
acceleration can be expressed completely either in the xyz or the x, y,z; coordinates by
employing the rotational transformation matrices discussed in Section 2.7. For exam-
ple, choosing the x; y,z, coordinate system and the transformation matrix [C,] of (2.38),
we get

cos@ 0 —sinf(% —JL
@)= 0 1 o [dota+!d o
sinf 0 cos@|lO 02L
or
ay = (%cos @ — GL)7, + (ksin @ + 92L)k, (2.76)

Alternatively, if the xyz coordinate system is employed, then employing the inverse of
this transformation matrix, we obtain
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2|

m

x|
i

X

(b) Figure 2.22 System of Example 2.9.

X cos@ 0 sin@](—6L
{az} =10, + 0 1 o 0
0 —sin® 0 cos® || 62L
or
a,= (% —@Lcosf -+ 02Lsin 6)7 + @Lsin® + 02Lcos O)k 2.77)

) It is noted that (2.75) yields the same result for the acceleration that was obtained
In Example 2.4 by employing normal and tangential coordinate systems.

Example 2.10

\w mechanism shown in Fig. 2.23 rotates about the vertical axis with angular velocity

¢ .m:a angular acceleration ¢. A mass m is pivoted at point C on the arm OC. Deter-
mine the velocity and acceleration of mass m.
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1

Figure 2.23 Rotating mechanism of Example 2.10.

Let x,y,z, be a coordinate system that rotates about the z, axis with angular
velocity @ = ¢k,. The position of m relative to this frame of reference is given by

r=(a+bsin@)i, — bcosbk, (2.78)

The relative velocity and acceleration are obtained from (2.78) as
7 = b0 cos 07, + b0 sin Ok, (2.79)
7= (b cos @ — bO2 sin @Y7, + (bf sin O + 502 cos Ok, (2.80)

Noting that the origin O has zero velocity, (2.64) yields the absolute velocity of m as
P=r+mxr
= b0 cos 07, + b0 sin Ok, + ¢k, x [(a + bsin O)7, — b cos Ok,]
= b0 cos 67, + ﬁ.? + bsin )7, + b0 sin Ok,

Since the acceleration of origin O is zero, (2.65) yields the absolute acceleration of
s m.w .. — . =N — -
Aa=r4+20Xr4+oxr+ox(@Xxr) (2.81)
Substituting from (2.78), (2.79), and (2.80) in (2.81) and simplifying the result, we
obtain
a — (b cos @ — bB2 sin @ — P2(a + bsin B)7 ,
+ 240 cos 6 + $(a + bsin )] 7, + (b sin @ + b2 cos Ok,

2.9 MOTION RELATIVE TO THE ROTATING EARTH

In many applications, we employ a coordinate system whose origin is attached
to a point on the surface of the earth. The earth rotates about its axis and its
center revolves around the sun, and hence this coordinate system is not inertial.
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However, in some applications the additional acceleration terms introduced by
considering the rotation and translation of the earth are negligibly small com-
pared to the relative acceleration of a body, including the acceleration due to
gravity. In such cases, we may assume as inertial a coordinate system whose
origin is attached to a point on the surface of the earth and which does not
rotate relative to the earth. Of course, there are other cases where such a system
has to be considered as noninertial.

The acceleration caused by the rotation of the earth is much larger than
that due to the translation of the earth’s center. Considering the translation of
the earth as a secondary effect, let us assume as inertial a coordinate system xyz
which is attached to the center O of the earth and whose orientation is fixed in
space as shown in Fig. 2.24, The z axis is pointing in the direction of the earth’s
rotation and the xy plane is the equatorial plane.

Figure 2.24 The rotating earth.

The coordinate system x, y,z, is attached to a point O, on the surface of

the earth and rotates along with the earth at the same angular velocity mm

relative to the xyz frame. The origin O, is located at a latitude o as seen from

Fig. 2.24. The x, axis is tangent to the meridian circle pointing south, y, is

tangent to the parallel pointing east, and z, is in the direction of the local
vertical.

__ The position of mass m relative to the x, y,z, coordinate system is denoted

by r =x,i, + y1j: + z:k,. Assuming that the earth is a perfect sphere, the
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vector 0O, is denoted by R, = xam: where R, is the radius of the earth.
Employing (2.65), the acceleration of mass m may be expressed as

a=a,+r420Xr+OXT1+@X(@Xr) (2.82)
The angular velocity ® of the earth is expressed as
@ = —(wcos ®)1, + (@ sin @)k, (2.83)

where it is assumed that w is a constant and @ = 7.27 X 1077 rad/s, which corre-

sponds to one rotation per day. Hence, @ = 0. In (2.82), the term a, is the
acceleration of the origin O, and is given by

2, =@ X (@ X R) (2.84)
Equation (2.82) may now be written as
=0 X(@XRBR)+T+20XT +@X(@®XT) (2.85)

Substituting the various expressions in (2.85) and carrying out the vector cross
products, the components of the acceleration are expressed as

a,;, = —R,w*sinacos & + X, — 2wp, sin & — w?x, sin? &

x1
—w?z, sin & Cos &
a,, = J, + 2w%, sina + 2wz, cos o — w?y,
a,, = —R,w*cos? & + %, — 2wy, cos & — @x; sin & cos &
—w?z, cos? a (2.86)

The radius of the earth is given by R, = 6.37 X 10°m (3960 miles) and
w =727 x 1075 rad/s. Hence, in the first equation of (2.86) we get
R,w* sin & cos & = 0.0337 sin & cos & < 0.0337 m/s?. If errors in the second
digit after the decimal point are neglected compared to the acceleration of
gravity, which is equal to g = 9.81 m/s?, the term R,w*sin ¢ cos ® can be
dropped from the equation. If the displacements and velocities are sufficiently
small such that 2wy, € 1, w?x, < 1, and w?z, < 1, then the only significant
term in the first equation (2.86) is x,. Under these conditions, we obtain

a,, = X,
ay, = )i (2.87)
a, =~

Hence, in this case, a coordinate system fixed to a point on the surface of
the earth and rotating with the earth may be considered as inertial and this will
be implied in many applications that we consider. Of course, there are other
applications where these restrictions are not satisfied and (2.86) must be
employed. The effect of the Coriolis components in (2.86) can be observed in
the manner in which water spirals when draining out of a sink and wind spirals
toward a zone of low pressure.
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2.10 SUMMARY

This chapter has dealt with the kinematics of motion without considering the
cause of motion, which will be covered in the following chapters dealing with
kinetics. The expressions for the acceleration has a simple form when an inertial
frame of reference is employed. However, in some applications, for one reason
or another, it is more advantageous to employ a noninertial coordinate system.
For this reason, various coordinate systems, including tangential and normal,
polar and cylindrical, and translating and rotating rectangular coordinates have
been discussed. Expressions for the velocity and acceleration have been obtained
in terms of different coordinate systems. These results will be employed in later
chapters dealing with the kinetics of motion.

PROBLEMS

2.1. As observed from the deck of a ship traveling due north at a speed of 10 km/h,
the wind appears to form an angle of 30° east of north. When the speed of the
ship is increased to 20 km/h, the wind appears to form an angle of 20° east of
north. Assume that during the period of observation, the wind velocity is constant
and the ship travels in a straight line. Determine the magnitude and direction of
true wind velocity.

The position vector of a particle measured with respect to Cartesian inertial
coordinate system is given by F=xi + yj + zk. Express in terms of x, y, and
z and their first and second derivatives:

(a) The tangential component of the acceleration of the particle.

(b) The normal component of its acceleration.

(c) The radius of curvature of the path described by the particle.

The crank OB of an engine has a constant counter clockwise angular velocity of
w, rad/s (Fig. P2.3). As a function of angle &, determine:

(a) The angular velocity and acceleration of connecting rod BP.

(b) The velocity and acceleration of piston P.

Give your answers in terms of components along the inertial axes Oxyz.

2.2

2.3

M
|
|

Figure P2.3
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2.5.

2.6.

2.7.
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A turbine rotor of radius R is rotating at a constant angular speed @, about a
fixed axis (Fig. P2.4). A straight vane of length L is welded rigidly to the rotor and
the angle between the vane and the radial line is 8. A fluid particle slides outward
along the vane tip at a relative speed # which is constant. Determine the velocity
v, and acceleration @, of the fluid particle as it leaves the vane. Use rotating
coordinate system Oxyz.

y

Figure P2.4

The turret on a tank is rotating about the vertical axis at angular speed & and the
barrel is being raised at an angular speed 6 (Fig. P2.5). Both 6 and ¢ are con-
stants. The tank has a constant forward speed of V,. If a cannon is fired with a
muzzle velocity s and acceleration s relative to the barrel, determine the velocity
v, and acceleration @, of the cannon as it leaves the barrel. Employ Oxyz coor-
dinate system rotating with the turret at @ = ¢ ;.

Figure P2.5

A particle P is moving across a disk in a straight line AB with a constant speed ¥,
relative to the disk (Fig. P2.6). The coordinate system xyz is rotating with the
disk at angular velocity Sam and angular acceleration d,k. Determine the velocity
and acceleration of P in terms of the xyz coordinate system.

A radar antenna rotates about a fixed vertical axis at a constant angular velocity
w,J (Fig. P2.7). The angle @ oscillates as § — a, + a, sin w,¢. Determine the
velocity and acceleration of probe P using the rotating coordinate system xyz
attached to the vertical shaft.
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2.8.

2.9.

a

Wo

Figure P2.6

Figure P2.7

Water flows through a sprinkler arm OAB with a velocity v, relative to the arm
(Fig. P2.8). The arm rotates counterclockwise at a constant angular speed ..
Determine the acceleration of a particle of water as it leaves the arm at B. mBn_ow
rotating coordinate system Oxyz.

Figure P2.8
An .mEoBo_u:o is traveling due north at a constant speed of 80 km/h along a
mﬁ..&mE road (Fig. .wm.ov. It is in the northern hemisphere at 40° latitude. Deter-
mine the acceleration of the vehicle in terms of north, east, and local vertical
components.
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Figure P2.9
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DYNAMICS OF PARTICLES:
NEWTON'S LAW, ENERGY,
AND MOMENTUM METHODS

3.1 INTRODUCTION

The early part of this chapter is concerned with the derivation of the equations
of motion for a system of particles by direct application of Newton’s second law.
Physical coordinate systems such as Cartesian, tangential and normal, and
polar coordinates are employed to express the equations of motion. Some of the
coordinates may not be independent but related to the others by kinematic
constraints which are employed simultaneously with the equations of motion.
An alternative method of deriving the equations of motion based on Lagrangian
techniques and employing generalized coordinates is covered in Chapter 5.

It is recalled from Chapter 1 that a particle is defined as a body of any size
or shape that only translates without rotation. This implies that the resultant
moment acting on a particle is zero. When a body only translates without
rotation, all points of the body have the same velocity and the same acceleration
at any instant of time. Hence, a particle may be considered as a point mass.

The latter part of this chapter covers the energy and momentum methods
based on some principles of dynamics. The advantage of employing these
principles is that answers to some simple problems can be obtained directly
without formulating the equations of motion and obtaining theif solution.
Furthermore, impact between particles is best studied by employing these
principles. The principle of work and energy relates directly the force, mass,
velocity, and displacement, while the principle of impulse and momentum
relates the force, mass, velocity, and time.

41
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Figure P2.9
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DYNAMICS OF PARTICLES:
NEWTON'S LAW, ENERGY,
AND MOMENTUM METHODS

3.1 INTRODUCTION

The early part of this chapter is concerned with the derivation of the equations
of motion for a system of particles by direct application of Newton’s second law.
Physical coordinate systems such as Cartesian, tangential and normal, and
polar coordinates are employed to express the equations of motion. Some of the
coordinates may not be independent but related to the others by kinematic
constraints which are employed simultaneously with the equations of motion.
An alternative method of deriving the equations of motion based on Lagrangian
techniques and employing generalized coordinates is covered in Chapter 5.

It is recalled from Chapter 1 that a particle is defined as a body of any size
or shape that only translates without rotation. This implies that the resultant
BoB.Q: acting on a particle is zero. When a body only translates without
rotation, all points of the body have the same velocity and the same acceleration
at any instant of time. Hence, a particle may be considered as a point mass.

The latter part of this chapter covers the energy and momentum methods
cm.mna. on some principles of dynamics. The advantage of employing these
E.Eo_v_nm is that answers to some simple problems can be obtained directly
without formulating the equations of motion and obtaining their solution.
m_ﬁwoaaoﬁou impact between particles is best studied by employing these
principles. The principle of work and energy relates directly the force, mass,
velocity, and displacement, while the principle of impulse and momentum
relates the force, mass, velocity, and time.

4
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The two-body central force motion is discussed in the final part of the
chapter. It is concerned with two particles that move in space under the influence
of forces exerted by the particles on each other along the line joining them. The
two-body problem, together with Newton’s law of gravitation, is then employed
to study satellite dynamics and orbital mechanics.

3.2 EQUATIONS OF MOTION OF A PARTICLE

From Newton’s second law, it is seen that when the resultant force acting on a
particle is not zero, the particle moves so that the resultant force vector is equal
to the time rate of change of the linear momentum vector; that is,

Mmﬂ%@@ 3.1)

where 3 F is the resultant force, m the mass, v the velocity vector measured with
respect to inertial frame of reference, and my is the linear momentum. Consider-
ing a particle that does not gain or lose mass (e.g., a rocket can lose mass due to
depletion of fuel), and restricting the velocities to values that are much smaller
than the velocity of light, the mass becomes independent of time and (3.1)
may be written as

SFE—md— (3.2)

dt

where the acceleration vector a is measured with respect to the inertial coordinate
system (i.e., the acceleration is “absolute”). Employing an inertial Cartesian
coordinate system and _oasmﬂ denote the position vector of the particle from
the origin, (3.2) becomes

S F=mr (3.3)
and its three components are given by

S F,=m%

2 =mj (3.4)

M. F, = m#

The acceleration has the simplest form when the coordinate system is
inertial. Integration of these equations yields the position MS of the particle at
any time instant . An unconstrained particle has three degrees of freedom in
the x, y, and z directions, respectively. However, one or more of the degrees of
freedom may be constrained. For example, if the motion of the particle is
constrained to the xy plane, then the third equation of (3.4) becomes 3 F, = 0.

Sometimes it is convenient to employ a noninertial coordinate system
O,x,y.z; of Fig. 2.18, rotating at angular velocity @ and whose origin O, has an
acceleration a,. Denoting the position of the particle from the origin O, by r
and expressing all the vectors with respect to the x, y,z, coordinate system, we
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note from (2.65) that (3.2) may be expressed as
SF=ma, +r+20Xr+0Xr4+ax@x 1) (3.5)

In case tangential and normal coordinates are employed, then from (2.13)
the tangential and normal components of the equation of motion are expressed as

o dv
MN“... - EM
o2 (3.6)
F,=m—
x P

If polar coordinates are selected to represent plane motion, then from
(2.20) the radial and transverse components of the equation of motion are given
by

S F, = m(F — rf?)

S Fy = m(rb + 27) (3.7)

Equations (3.7) will be employed later for the study of two-body central
force motion. The choice of the coordinate system is very important and the
right choice can simplify the solution of the equations of motion.

3.2.1 State-Variable Formulation

Several methods of analysis of dynamic systems are based on the state-
space representation. In this approach, the equations of motion are represented
as a set of first-order coupled differential equations described by

M.&WHM.\,AN:...u.vmavm:...umivwvw

where the elements of the vector (i.e., the column matrix {x}) are called the state
variables and Q,, ..., Q,, are input forces. The right-hand sides of the state
equations are in general nonlinear functions of the state variables, forces, and
time. The derivatives of the state variables do not appear on the right-hand
sides of the state equations. Depending on the number of particles and the total
degrees of freedom, the correct number of variables must be chosen so that the
equations of motion can be represented in this form. The choice of state vari-
ables, however, is not unique.

The future behavior of a dynamic system may be specified in terms of
initial conditions at any instant of time and the inputs from that time onward.
The knowledge of past inputs is not required to determine the future behavior.
The n numbers required to specify the future behavior of a dynamic system
represent the initial state of the system and the variables used to represent these
numbers at each instant of time are called state variables. Hence, the state-
variable vector {x(#)} consists of time functions whose values at any specified
time represent the state of the dynamic system at that time. The n-dimensional
space with the state variables as coordinates is called the state space as discussed
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later in Chapter 6. The state-variable formulation will be clarified by several
examples that are given later.

Example 3.1

A particle of mass m slides down the surface of a smooth spherical radome of radius R
(Fig. 3.1). It starts at the top where § = 0 with a small angular velocity 6,. Neglecting
friction, determine the angle 8,, at which it loses contact with the surface.

Figure 3.1 Particle sliding down a
radome.

4 Figure 3.2 Free-body diagram of par-
ticle.

This problem is solved here employing the equations of motion in polar coor-
dinates. The free-body diagram of the particle for any angle 8 < 8, is shown in Fig.
3.2, where N is the normal force. Employing (3.7), we note that r = R, constant, sO
that 7 = # = 0 and we get

S F, = N — mgcos§ = —mRO? (3.8)
3 Fy = mgsin = mR§

The first of these two equations is merely a constraint equation that yields an expression
for N, whereas the second equation is a differential equation for 8(¢). The condition
for the particle to leave the surface is that N = 0. Hence, from the first equation of
(3.8), we obtain

0z = Sm 0, (3.9)

The second equation of (3.8) can be integrated once to obtain a relationship between
6 and 0 as follows. Since

_dg_d0d6 _,db
|%m|% &lmalq
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from the second equation of (3.8), we obtain
0 , . 6
% 6ad — [ £singag
[1]
or
62 =02 + 20 —cos9,) (3.10)

Equating the right-hand sides of (3.9) and (3.10), we get

2
W cos 8, =02 + WMC —cos8,)
or .
RO 2
OOWQE = MW |wl AM.HHV

The initial velocity m.e must be small enough so that the right-hand side of (3.11) is less
than unity. The equations of motion can also be formulated by using the tangential
and normal coordinates. From (3.6), after noting that v = RO and p = R, we obtain

S F, = mgsin@ = mRl
S F, = —N + mgcos = mRO2

which are the same equations as (3.8). It will be seen later that the answer to this
simple problem can be more easily obtained from the work—energy principle without
formulating the equations of motion and obtaining their solution.

Coulomb friction could be included to oppose the sliding motion. Coulomb
friction is a constant force that opposes the motion. In the 8 direction, the frictional
force becomes Fy = —uN sgn % where the signum function is defined by sgn 6 =
+1if@ > 0,5gn@ = —1if§ <0,and —1 < sgn § < 1 for @ = 0 as shown in Fig.
3.3, After substituting for N from the first equation of (3.8), the differential equation
of motion in the @ direction becomes

mRY + p(mgcos @ — mRO2) sgnf — mgsin@ =0, 0<84,, (3.12)

The foregoing equation is nonlinear and numerical integration can be employed
to obtain a solution. Numerical integration techniques are discussed in Chapter 7.

sgn

) ——

Figure 3.3 Signum function.

Example 3.2

A rigid shaft is rotating at constant angular velocity w, about a vertical axis as shown
in Fig. 3.4. A mass m can slide with Coulomb friction on the shaft OD and is restrained
by a linear spring of stiffness & and unstrained length L. Obtain the equations of motion
of mass m.
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Figure 3.4 Sliding mass.

We employ a rotating coordinate system with origin at O and rotating with the
angular velocity @ = w,j as shown in Fig. 3.4, The free-body diagram of the mass is
shown in Fig. 3.5, where k(x — L) is the spring force, Fy the friction force, mg the
weight, and N, and N, are the components of the reaction along z._m y and z axes.
Referring to (3.5) and letting a, be the acceleration of the origin and r the position of
the mass with respect to this coordinate system, we note that

a, =0, wxr=0
F=%1,20 X =2m,] x%i = 2wk
@ X (@ X7)=0,] X @@,] X xi)=—wxi

Hence, the absolute acceleration vector becomes
a=xi —2w5k — wxi
From the free-body diagram of Fig. 3.5, the equations of motion can be written as

follows:
x axis: —k(x — L) — Ff = m(¥ — @2x)

yaxist N,—mg=0

z axis: N, = —2mw, %

mg

kix-L) e—m — A

O

Ff wo—

/7

Nz
Figure 3.5 Free-body diagram of mass.

Ny
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The second and third of these equations yield expressions for components of the
reaction, whereas the first equation is the differential equation of motion. Now,

F; = uNsgnx = u[(2mw, %)* + (mg)?]'/? sgn %
Hence, the equation of motion becomes
mi + pu[Cmw,%)? + (mg)]V2 sgn % + k(x — L) — mw?2x =0 (3.13)

Sometimes it is desirable for the purpose of analysis, as discussed earlier, to express the
equations of motion as a set of first-order equations. The variables chosen to represent
the equations in this form are known as state variables and the equations are known
as state equations. Letting x; = x and x, = %, (3.13) may be expressed as

X =X

kL
m

Xy = _k x1 +wix; — mzmseeknvn + (mg)?]*/% sgn k‘n +

m (3.19)

The first of these equations is merely a definition, whereas the second is obtained from
the equation of motion (3.13).

Example 3.3

A ball of mass m is made to resolve in a horizontal circle at a constant angular velocity
@, as shown in Fig. 3.6, If the maximum allowable tension in the cord is Th,,, deter-
mine the maximum allowable velocity w, and the corresponding value of angle 0., .

y

Figure 3.6 Ball revolving in circle.

We employ a rotating coordinate system Oxyz with fixed origin O and angular
velocity @ = @, as shown in Fig. 3.6. In (3.5), the only nonzero acceleration term is
given by

a=w x (@ x7)=w,j x[w,] x (bsinfi — bcos )] = —w2bsinO7

The free-body diagram of the ball is shown in Fig. 3.7, where Tis the tension in
the cord. Hence, we obtain the following equations:

xaxis: —Tsin§ = "—mw2b sin O (3.15)
¥ axis: Tcos@ —mg=0 (3.16)
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mg  Figure 3.7 Free-body diagram of ball.

From (3.15), we get max w2 = T,,./mb and from (3.16) it follows that Op,, =
OOwl— ABM\N..B»*V.

3.3 EQUATIONS OF MOTION OF A SYSTEM OF PARTICLES

Newton’s second law has been stated for a single particle but it can be easily
extended to study the motion of a system of particles. In the first method,
which is convenient when the particles are constrained because they are con-
nected by massless linkages, cables, and other devices, we employ the free-body
diagram for each individual particle and obtain the equations of motion for
each particle. The constraint forces now appear in the equations of motion and
have to be eliminated. It should be noted that for each constraint force there is
an equal and opposite constraint force according to Newton’s third law. This
method is illustrated in Example 3.4.

In the second method, which is convenient for a system of free particles,
we consider the motion of the mass center of the system. Consider a system of
particles as shown in Fig. 3.8. The forces acting on each particle are separated
into two parts. Let F, be the resultant of all external forces acting on ith particle
and \M,_m \.s,: be the resultant of the internal forces exerted on the ith particle
by the other particles. It is noted that \.s,.._. = 0 since there are no interacting
forces between a particle and itself. The internal forces may be caused by a
central force law such as Newton’s law of gravitation or Coulomb’s law describ-
ing the forces among electrically charged particles. Letting &% denote the
complementary Kronecker delta function (i.e., 8% == 1 — §,,, which is 0 for
i=jand 1 fori s~ j), and employing Newton’s second law to the ith particle,
we obtain

N.w,‘;x\M_%HL:HsSNmN (3.17)
Summing up over the entire system of particles, we get

Mﬂ;xMMmuw:HMEWMN (3.18)
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Figure 3.8 System of particles.

The internal forces \N ;and w: are equal and opposite and hence N ; + w:
= 0. It follows that in (3.18), we get

n

M%HN&”O

J=1

M:

=

i=

and that equation becomes

El

-

1= 2, ma (3.19)

i=

4
.

]
-
-

i

For the system of particles as a whole, the sum of the internal forces
reduces to zero. However, it does not imply that the internal forces have no
effect on the particles. The gravitational forces that the sun and the planets exert
on each other sum up to zero for the solar system but cause the motion of
the planets around the sun. The constraint forces, if applied by themselves, will
not cause the system to move.

R The mass center of the system of particles is defined by the position vector
r., which satisfies the relationship

mr, = 3 m7r, (3.20a)
i=1

where m is defined as the total system mass, that is,

m=Ym .
i=1

|
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Employing inertial coordinate system and differentiating both sides of
(3.20a) with respect to time, the velocity v, and acceleration a, of the center of
mass are given by

- n -
mv, = Y, mu,
i=

(3.20b)

SMQ == S Snmn
=1
From (3.19) and (3.20), we obtain
3 F,=ma, (3.21)

i=1
This equation states that the mass center of a system of particles moves as
if the entire mass of the system were concentrated at that point and all the
external forces were applied there. The quantity mv, is the linear momentum of
the system of particles. If no external force acts on a system of particles, the
left-hand side of (3.21) is zero and the linear momentum is conserved (i.e.,
qu = constant).

Example 3.4

A particle of mass m, is free to slide on a horizontal bar with Coulomb friction under
the action of a force P. Mass m, is pivoted from m; by a massless rigid link of length 5.
Obtain the equations of motion for this system of particles shown in Fig. 3.9.

T
=
TR AT

m
2 .
Figure 3.9 System of two particles.

This problem is solved by drawing the free-body diagram for each particle as
shown in Fig. 3.10, where the constraint force F is the tension in the rod. Cartesian
inertial coordinates are employed to designate the position of m; and polar coordinates
with origin at the moving point 4 for the position of m,.

From (3.3) the acceleration of m, is given by n_ = %7. The acceleration of m,
is obtained from (3.7) after noting that r = b, # = ¥ = 0, and the origin has accelera-
tion %7. Hence, the acceleration of m, becomes

e

a, = %7 — b0*7, + bO7,
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N
b62 bé
UN sgn x —e—— e P i %
m, Ty
(c)
0
mg F Mag
(a) (b)
Figure 3.10 Free-body diagram of the two masses.
We get the following equations for mass m; :
xaxis: P — uNsgnx + Fsinf = m % (3.22)
yaxis: N —mg—Fcosf@ =0 (3.23)
The equations for mass m, are .mm follows:
raxis: mygcosf — F = my5%sin@ — m,bf2 (3.24)
0 axis: —m,gsin@ — m,% cos O + m,bf (3.25)

Now, the constraint force F is eliminated by substituting for it from (3.24) in
(3.23) to obtain

N =rm g + (myg cos @ — m,% sin @ + m,b62) cos §

The foregoing equation is employed to eliminate the constraint force N from
(3.22). The two coupled equations of motion are now given by
my % + my% sin2 @ — m,g sin @ cos O — m,b02 sin 6
+ ulmi g + (m,p02 + m,g cos @ — m, i sin 0) cos Olsgnx =P (3.26)
my%cos @ + mubl + mygsin@ =0 3.27)
In order to express these equations as a set of first-order equations, we choose

the displacements and velocities as the state variables. Let x; = x, x, = 0, x3 = %,
and x, = 6. Now (3.26) and (3.27) become

myX3 + myX; sin? x, — myg sin x, cos x, — mbx? sin x,

+ ulmig + (mybx} + myg cos x, — myX; sin x,) cos x,] sgn X = P
and

myX 3 COS x5 + mubXy + mygsinx, =0
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These equations can be expressed as
X = X3
X, = x4
X3 = f3(x1, X3, X3, X4, P)
= fa(x1, X2, X3, X4, P)

where the first two equations are obtained from the definition of the state variables and
the last two from the equations of motion (3.26) and (3.27).

Example 3.5

A projectile of mass m has a velocity v, and altitude 4,7 at the instant when an explo-
sion breaks the projectile into two parts of masses m; and m,, respectively. The coor-
dinate system is shown in Fig. 3.11.

ho

X, s

Figure 3.11 Trajectory of an exploding projectile.

The part of mass m, strikes the ground ¢; seconds later at a location x, 7 + z,k
from the origin. Determine the position x,7 + y, + z,k of mass m, at that instant.
Neglect the aerodynamic drag.

This problem is resolved by considering the motion of the mass center. Neglect-
ing aerodynamic drag, the equations of motion for the mass center of the two parts are

X, =0, .X..nAOv = Vo, RnAOv =
Ve = —g, .uvnAOv =0, .v\nAOv = }o
i, =0, NnAOv =0, NnAOv =0
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The solution of these equations of motion is given by
X, = vpl
Yo =ho — jet?
z, =0
At time ¢4, it follows that
x{t) = v,y
yt) = h, — Lgtt
() =0
We also have the relationship
mr () = my71(8) + myr(t) where m = m, + m,
Hence, we obtain
mlvts i + (b, — 3gtHJ1 = milxi7 + 21Kl + molx, 7+ yoJ + 22K]
It follows that

mut; — myx,

X, =
2 m,

m
Y2 = S|NQC — 4gt})

3.4 ANGULAR MOMENTUM OF A SYSTEM OF PARTICLES

First, we consider a single particle of mass m acted upon by a resultant force F.
The particle has velocity » measured with respect to an inertial coordinate
system Oxyz as shown in Fig. 3.12. The linear momentum of the particle is Ee.
The moment of the linear momentum vector about the fixed point O is r X mo.
This is referred to as the angular momentum vector H, of the particle about
point O and is given by
H=7xm (3.28)
The vector H, is perpendicular to the plane containing 7 and mv and has
magnitude H, = rmv sin 8, where 8 is the angle between r and mv as shown in
Fig. 3. 12. The sense of H, is given by the right-hand rule. Resolving the vectors
r and mv into components, we can write

= A =

i ]k
H=|x y z (3.29)
mv, mv, mv,

Next, we compute the derivative with respect to time of H,. From (3.28)
we obtain

H =7 xmo+7 Xmp (3.30)
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Figure 3.12 Angular momentum of a particle.

Since the inertial ooona_nmﬁo system is employed, the first term on .the
right-hand side 0m (3.30) becomes » X mp = 0 and the second term 7 X mv =
rXma=rxF F, where F is the resultant force on the particle. Hence, we get

=Y

H=rxF

o

-

— M (3.31)

o

which states that the resultant moment of the forces about O is equal to the rate
of change of angular momentum about O. We now consider the moment of the
momentum about a moving point 4 as shown in Fig. 3.12. We obtain

.m.k = M.-km X mv
and its derivative with respect to time becomes
H,y=r,  Xmv—+ 14 Xmv (3.32)

Now, my=F and denoting T X F by M, the foregoing equation can be

written as
Y

H =rg xmv+ M, (3.33)
This equation states that the resultant moment of the forces about a moving
point 4 is in mononm_ not equal to the rate of change of angular momentum about
A. We get H, = \S 4 only when r 4 X v =0. When 4 coincides with the fixed
point O, 74, X » = » X v = 0 and we obtain the result of (3.31). Also, H, =
M, — 0 when 7 1 = 0 and point A4 coincides with the particle.
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zosv - N N N N
ra X my=(—ry+r)xXm
= A|M 4t mv X mv
= —r, X my
— |M\rk X SMM
and (3.33) can also be written as
Hy= —0p,x mv+ M, (3.34)
It can be seen that when 4 is any fixed point, we have v, = 0 and H,— =M,
The foregoing results are now generalized to a system of » particles with
masses my, ..., m, each of which is acted upon by a resultant external force
F,, i=1,2,...,n Each particle has velocity v, with respect to an inertial
coordinate system Oxyz as shown in Fig. 3.13. The linear momentum of the
system of particles is S_@.H + -+ §=m= = §m2 where m = > m, and un
i=1
the velocity of the center of mass as seen from (3.20). The moment of the
momentum of the system of particles about a moving point 4 is given by

a n

H,=3 w\: X M, (3.35)

i=1

The derivative with respeet to time of this equation yields

n

= M Fa X mp, 4 3 T x mo, (3.36)

i=1

I.r

~

Figure 3.13 Angular momentum of a system of particles.
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From Fig. 3.13, it is seen that
m.&”m.;ﬁn_nm,Q and v=r,+ra

where C is the mass center. Also,

n - =N n PN =y
M“x;_.XQ:SHmeEXNﬂ
= =

since
M\“M.‘__Aw\: X \.q,:v”o

because the internal forces N. ,and w, 1 are equal and opposite. Substituting these
results in (3.36), we obtain

MC“MAM\AOITMQVVA§~Aﬂn+ﬂﬁv+.u_ﬂkxwm (3.37)
Now, M,_“ EMQ = 0 since Cis the center of mass, wn = me and =_ w& x F,=M,.
i=1 i=
Hence, (3.37) becomes .
H,=r,cXmv,+ M, (3.38)

which is the generalization of (3.33) to a system of particles. Again, it is seen
that the resultant moment of the forces about a moving point 4 is in general
not equal to the rate of change of angular momentum about 4. When point 4
coincides with the fixed origin O, re=r e = m. and (3.38) becomes

H,= M, (3.39)
When the moving point 4 coincides with the moving center of mass C, then
r . = 0 and (3.38) reduces to

Y -

H =M

p . (3.40)
Hence, it can be seen that if it is necessary to take moments about a moving

point, it is advantageous to choose the moving center of mass as that point.

Example 3.6

In this example, we again consider the two particles of Example 3.4 shown in Fig. 3.9.
For the moving point 4, we choose the location of the particle of mass m;. We have the
following equations to describe the positions and velocities.

a >

ry =xi, 7, =(x+ bsin@)i —bcoshj
21 =%x7, 0,= (% + bl cos )7+ b0 sin ]
(my + my)r, = myx7 + my[(x + bsin @)7 — b cos 87]
(my + mp)v, = mxi + my[(% + b6 cos 0)7 + b0 sin 6]
Since the point A is located at the particle of mass m;, only m, v, has a nonzero
moment about 4 and we get
Hy=(bsinO7 — bcos0F) x my[(% + b0 cos 0)7 + b0 sin 871
= (m,620 + mybx cos O)k (3.41)
Hy= (mb? + myb% cos O — mybil sin )k
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The only force which has nonzero moment at 4 is —mygJ and we get
My = (bsin@7 — bcos07) X —myg ]

= —my,gbsin Ok (3.42)
Now,

N =Y a - -

Fac=Tre—xi and Fge = v, — X1
Hence,
w;q Xmy, = (0, —X7) X (my + m;)o,
—%7 X (m; + my)o,
—%7 X [my %7 + my(® + b0 cos )7 + m,b0 sin 0]
= —m, b%0 sin Ok (3.43)
Substitution from (3.41), (3.42), and (3.43) in (3.38) yields

myb20 + mybi cos § — m,bx0 sin § = —m,b30 sin @ — m,ghsin 0

I

I

or
myb + my% cos @ = —myg sin @ (3.44)

which is the same as the equation of motion (3.25).

3.5 PRINCIPLE OF WORK AND ENERGY

We now consider the principle of work and energy, which is derived from the
first integral of the equation of motion obtained from Newton’s second law.
This principle provides quick answers to simple problems without the formula-
tion of the equations of motion and their solution. Besides, work and energy
are useful concepts in formulating the equations of motion by the Lagrange
method. There are several advantages in using the principle. Both work and
energy are scalars. The forces of constraints and other forces that do no work
can be ignored. A system of particles can be considered as a whole.

__ Consider a particle of mass m which is acted upon by a resultant force F.
Let r denote the position of the particle as shown in Fig. 3.14. Let the particle
move from position r to r + dr. The vector dr is called the displacement of
the particle. The work of the force F corresponding to the displacement dr is
defined as

aw =F . dr (3.45)

Assuming that the coordinate system of Fig. 3.14 is inertial and applying
Newton’s second law, we get F — mr. Hence, (3.45) becomes
dW =F -dr = mr - dr
=mr - dr =d(mr - 1)
= dT (3.46)

Where the kinetic energy T of the particle is defined by T = mSw -7 and 7 is the

a

particle velocity. When the particle moves from position r, to r, under the
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Figure 3.14 Work done by a force.

action of the resultant force F, integrating (3.46), it follows that

ri

.ﬁw&unm|wp (3.47)

where the subscripts 1 and 2 denote the kinetic energy corresponding to positions
J and r,, respectively. The foregoing equation states that when a particle
moves from position r; to S under the action of a force F, the work done by
the force is equal to the change in the kinetic energy of the particle. This is called
the principle of work and energy. The work done may be positive or negative
depending on the direction of the displacement and the direction of the force.
Expressing the kinetic energy as T = wSm - v, it should be noted from the
derivation that the velocity used to determine the kinetic energy should be
measured with respect to an inertial system of coordinates. If the position r
is expressed in terms of a noninertial coordinate system whose angular velocity
is @ and whose origin has velocity v,, then it is recalled from Chapter 2 that the
absolute velocity is given by

v=p,+rt@xr (3.48)

and it is employed in computing the kinetic energy.

The generalization of this principle to a system of » particles is straight-
forward. The quantity 7 now represents the kinetic energy of the entire system:
that is,

-

HW“M N.\ms.
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The work is the sum of the work of all the forces acting on the particles
of the system; that is,

: m_..NL :L |r
E“__Afms.?
It should be noted that, while the internal moHoomw. yand \.» s are equal and opposite
the sum of the work done by the internal forces may not add to zero because the
particles on which they act undergo different displacements. Hence, in computing
the work done, both internal and external forces should be considered. Those

forces that do no work are ignored.

Example 3.7

A system of two masses m, and m, shown in Fig. 3.15 is at rest when a constant force
P is applied to mass m,. The coefficient of friction between each mass and the hori-
zontal plane is #. Determine the velocity of mass m, after it has moved a distance d.

mg

!

Figure 3.15 System of two masses.

Masses m; and m, are constrained kinematically by the relationship 2x; —
3x, = 0. Hence, v, = %7v;.

The forces acting on each of the masses are shown in Fig. 3.15. The tension in
the cable is a constraint force and does no work. Also, forces m, g, m,g, N1, and N, do
no work and are ignored. When mass 7, has moved a distance d, mass m, moves a
distance Zd. Hence, the total work done is given by:

work = Pd — Fid — F:%d
But F; = 4Ny, F; = N, N, = m, g, and N, = m,g. Hence, the work done
becomes:
work = Pd — pumy gd — 3um,gd
Since the system starts from rest, 7, = 0 and 7, becomes

N4N = .m.ww:em + .W.SNQW

u dmyv} 4 1 - $myol

ence,

02 _Pd— pmgd —3pm,gd
tmy + fem,
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Example 3.8

The magnitude of the velocity of the projectile of Example 3.5 is v, when it explodes
into two parts of masses m,; and m,. Immediately after the explosion, the magnitudes
of the velocities of m; and m, are observed to be vy and vy, respectively. Assuming that
the explosion is instantaneous, determine the work done by the internal forces during

the explosion. .
The expressions for the kinetic energy just before and after the explosion are

obtained as
T, = J_NQE + myd
T, = w.snem + WSNQW
Since the explosion is instantaneous, the displacement of the external forces
during the explosion is zero and hence their work is also zero. Only internal forces do
work, which is given by:

. 2
work by internal forces = Ty — Ty = mv} + $mpvl — §(m; + m3)vs

3.5.1 Conservative Forces and the Principle
of Conservation of Energy

A force is called conservative if the work done by the force in a closed path
is zero; that is,

%w “dr =0 (3.49)

This line integral can be converted to surface integral by Stokes’s theorem,
and we obtain

.:,.vxw.&mﬂo

where V is the differential operator del or nabla, and n is the unit vector normal
to the surface. This leads to the condition that V x F =0 for a force to be
conservative. But the curl of a vector vanishes if and only if the vector is the

gradient of a scalar. We denote this scalar function associated with vector F
by — U, where U is called the potential energy and write

F=-VU (3.50)

The negative sign in the foregoing equation is employed so that if the work is
positive, the potential energy decreases, and vice versa. The potential energy U
is a function of position only. From (3.45), the infinitesimal work done by the
force in a displacement d7 is given by

dW =F dr = VU -dr
= —qU
where in Cartesian coordinates we have

(U, U, U
—dU — Aﬂ&Jr%%Lw&&v
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Hence, when a particle moves from position .? to wN under the action of a
conservative force F, the work done can be obtained from the change in potential
energy as

% "Eodr = U(r) — Us(ry) (3.51)

r

where the right-hand side denotes that U, and U, are functions of 7, and 7,,
respectively. Now, if all the forces acting on a system of particles are conserva-
tive, then in the work—energy principle (3.47) we substitute from (3.51) for the
work done to obtain

inQNH.HNI.ﬁ

or

q_lT.‘N..n“QNITN;N“m AW.MNV

where E is a constant and is the total mechanical energy of a system of particles.
The foregoing equation states that when all the forces are conservative, the total
mechanical energy, which is the sum of kinetic and potential energies, is con-
served. This is called the principle of conservation of energy. It should be noted
that the only area of applications, where all the forces are conservative and
mechanical energy is conserved, is the area of orbital mechanics, which is dis-
cussed later. In almost all other applications, we encounter some friction, drag,
or dissipative mechanisms. In such cases, total mechanical energy is not con-
served and (3.52) provides only an approximation when the effect of dissipative
mechanisms is negligible. Usually, the conservative forces in dynamics are due
to spring or elasticity and Newton’s law of gravitation.

Example 3.9

A mechanism for shooting a plunger is shown in Fig. 3.16. The mass of the plunger is
m and the undeformed length of the spring is {. It is compressed to a length €; by a
force P and then released when it expands to length ¢,. Determine the velocity of the
plunger as it leaves the mechanism, assuming that £ > £, > ¢,. Neglect friction.

—

|
RS
[

m..m_.qou.;Zoo:mzmmamgmrooanm m L
plunger. 1 T

4

b

The spring force is conservative. If the spring is stretched by an amount J from
its unstretched length, the spring force is ¥ = —kJ, where k is the spring constant and
it is assumed that the spring is linear. Now, if the-spring is given a displacement d4J,
the increment of work becomes

dW =Fdd = —kd dd
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and the work in stretching it from &, to 5 is
L2
W= ?& = —[Tkoas
1
= 1kd? — 1 ko3
It follows that the potential energy of the spring is given by U = 1kd2. Neglecting

friction, the only force that does work is the spring force and hence the total mechanical
energy is conserved. We then obtain

T+ U =T+ U:
where Ty =0, Uy = k(£ — £,)?, T, = imv, and U, = Jk({ — £;)2. Hence,
k(6 — €))2 = Lmvd 4 k(£ — €,)>
or

- (AR AL

Also, P = k(£ — £,); that is, k = P/({ — £,). It follows that

2 P — —( =
vy = j [ =42 — (€ —¢)%

3.6 PRINCIPLE OF IMPULSE AND MOMENTUM

The principle of impulse and momentum is another principle of dynamics. It
is also derived from the first integral of the equations of motion obtained from
Newton’s second law. Consider a particle of mass m acted upon by a resultant
force F. From Newton’s second law, we get

-

j W () (3.53)

where mu is the linear momentum. This equation can be written as
F dt = d(mv)

Integrating with respect to time from ¢, to ¢,, we obtain

“Far= [ECD)

= mv, — mv, (3.54)

where the subscripts 1 and 2 on the right-hand side designate the velocities at
times ¢, and ¢,, respectively. The left-hand side of this equation is called the
linear impulse and the right-hand side is the change in linear momentum. This
is called the principle of impulse and momentum. It states that the linear impulse
is equal to the change in linear momentum. It should be noted that unlike work
and energy, which are scalars, impulse and momentum are vector quantities.
The advantage of employing this principle is that when the left-hand side of
(3.54) can be integrated, answers to certain problems can be obtained quickly
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without integrating the equations of motion. If the resultant force acting on a
particle is zero (i.e., F' = (), then (3.54) becomes

§m~ = S.m_ — mv = constant (3.55)
which is a statement of the conservation of linear momentum.

For a system of n particles, the linear impulse momentum principle can be
stated as

s ("Far = AM_ s@vw — AM s@v (3.56)
31 = = 1
Also, integrating (3.39) with respect to time from ¢, to ¢, we obtain
> [ M,dt = (#), — (H), (3.57)

This equation states that the sum of the angular impulses of the external forces
about the origin is equal to the change in angular momentum of the system. If
no external force acts on the particles of the system, then the left-hand side of
(3.57) is zero and we get

AN:W@VN = Am.ovu = N:Wou constant
which is a statement of the conservation of angular momentum about the origin.
Example 3.10

A collar of mass m slides on a rod with Coulomb friction under the action of a force P
shown in Fig. 3.17. The coefficient of friction is 4. Determine the time at which the
collar comes to rest again.

The forces acting on the collar are shown in Fig. 3.17. The linear momentum in
the y and z directions is zero at all times. In the x direction, we obtain

I
._..Q. — F)dt = mv, — mo,
V]
where 1, is the time at which the collar comes to rest again. Since vy = v, = 0, we have

;.:m dt = .ﬁ. Fdt
0

mg

TIME

N 0

(a) (b)

Figure 3.17 Collar sliding on a rod.
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The value of the integral on the left-hand side is P,, as seen from Fig. 3.17, and
F = uN = umg. Hence, we obtain
= umgt,
or
P,
umg

I, =

3.7 TWO-BODY CENTRAL FORCE MOTION

When the resultant force acting on a particle always passes through a fixed
point O, the particle is said to be moving under a central force, and the point O
is referred to as the center of force. The force may be directed toward or away
from the center of force. Since the force passes through O as shown in Fig. 3.18,
we have X M, = 0 and from (3.31) it follows that NN. — 0; that is, H, = con-
stant for all time. Hence, under a central force field, the angular momentum is a
constant in both magnitude and direction.

m|

=~

Figure 3.18 Motion under a central
z force.

Since H, = 7 X mp = constant, the motion takes place in a plane defined
by some initial position vector 7 and initial velocity vector v. The constant vector
H, is of course perpendicular to this Pplane. mEEow_nm vo_mn coordinates to
represent this plane motion, we have r = ri, and v = Fi, + x?s as shown
in Chapter 2. Hence, it follows that

H,=ri, x m@#i,+ r07,)
= mr*0k = constant (3.58)

This equation may also be given a geometric interpretation. As shown in
Fig. 3.19, an element of area in polar coordinates has the expression

dA = %r*df
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Figure 3.19 Motion under central force
in polar coordinates.

Differentiating both sides of this equation, we obtain

A—4ré (3.59)

and from (3.58) it is seen that 4 = constant. This is the statement of Kepler’s
second law for planetary motion, which is stated later in this chapter. The
quantity A is called the areal velocity.

We now consider two-body central force motion, where two particles are
free to move in space under the influence of forces exerted by the particles on
each other along the line joining them. In the following, it is shown that this
problem can be reduced to that of a single particle moving under a central
force, the center of force being the other moving particle. Let m, and m, be the
masses of the two particles and 2 ; and xn be their position vectors, respectively,
with respect to an inertial coordinate system Oxyz shown in Fig. 3.20. The

o y
N;EWF = 5)4“
M, X WMy¥Vy = ,\<</.l we\Ye
M, ﬁﬂwr EY </ Mty - bwea (,ﬁu/.,«mu
fiz S 5
m.s A\ *_3,7 ver Mg m, [
T
LT S L S C
LA Y
no_ 2
_‘O —
- —
fai
X
0

z .

Figure 3.20 Two-body central force motion.
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position of the mass center is defined in the usual manner as
§_ﬂ_ + myry, = (my + myr,
Let 7 be the radius vector from m, to m,. From Fig. 3.20, it is seen that

- -

Ry . (3.60)
= - m -
r,=r, s +§~~. 3.61)

Let N , be the internal force on m, due to m,, there being no external forces.
Force f,; may be an attractive or repulsive force. The equations of motion for
each of the two particles are

= . LY o Y s—sN "2 WQN
= mr, = mr —1L 2 4 .
.\.»N 171 1 nl_ls_l_lsn A v
r » [N mm, =
= Mur, = mur, — —L-2 r 3.63
.\.N_ 27 2 2% ¢ m, l__lw.w‘NN A v

where substitution from (3.60) and (3.61) has been employed. Since the internal
forces add up to zero, adding (3.62) and (3.63), we obtain

(m, + m)r, =0 (3.64)

It is concluded that .wn = 0 (i.e., the center of mass is unaccelerated). It follows
from (3.62) and (3.63) that

fia= |§\_3wa5..“ (3.65)
fu= |\§”=_Lm=w5w (3.66)

Equation (3.65) may be given the following _Eonvnoﬁmcon As seen from
Fig. 3.20, r is the position of m, relative to m, and hence r is the acceleration of
m, relative to m,. We can now select the position of m, as the origin of the
coordinate system and in (3.65) treat r as the absolute acceleration, provided
that the mass m, is replaced by an equivalent mass m,m,/(m, + m,). The motion
of m, can then be considered as that of a single particle under the action of a
central force. The center of force is the position of m,. Alternatively, we can
employ (3.66) and study the central force motion of m,, the center of force
being the position of m,. In this case, the mass m, would be replaced by the
equivalent mass m,m,/(m, + m,).

In order to study the orbit of m, around m,, we select the position of m,
as the origin and for simplicity of notation let m = m m,/(m, + m,). Employing
polar coordinates to represent this plane motion and making use of (2.20) the
equations of motion of m, are represented by

m(F — r6?) = f (3.67)
m(rd + 2/8) = 0 (3.68)
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where m is the equivalent mass of m, and f = f,, is assumed to be a repulsive
central force. By differentiating (3.58) with respect to time, it can be verified that
we obtain (3.68). Equations (3.67) and (3.68) are valid for any central force and
have applications in atomic and nuclear physics. Here, we restrict ourselves only
to the study of orbital mechanics in the next section.

3.8 ORBITS OF PLANETS AND SATELLITES

The orbit of one body around another is governed by Newton’s law of gravita-
tion. In this case, the central force is attractive and is given by

Hence, the equations of motion (3.67) and (3.68) become

mimy o day . Gmm,
e r6?) = — T (3.69)
mm, 5 0y oA )
prraa— (r8 +2:0)=0 T ! (3.70)

Equation (3.70) can be integrated once with respect to time resulting in

r*§ = h, where & is a constant and from (3.58) it is seen that 4 is the angular
momentum per unit mass. Hence, (3.69) and (3.70) become

F— rfr = Gl £ ms) 3.71)

rf = h (3.72)

These nonlinear equations can be integrated in a closed form by making a

substitution for r. Let 1/r = u. Eliminating the time dependence from (3.71),

we get
._ drdf h dr d(1\_  ,du
"Taa T Pde Aﬂvl dae (3.73)
. _ drdl hd _ du
F=dga —raD = " (.79

where we have substituted for § from (3.72). mEEoSbm (3.72) and (3.74) in
(3.71), we obtain the linear equation
G
DU u= As_\"‘wév . (3.75)
where the right-hand side forcing function is a constant, Its solution is obtained
by adding the particular solution G(m, -+ m,)/h? to the complementary wo_csoz
Ccos (0 — 8,) to obtain

1
P

_ = Gl ) £ a) - Coos (8 — 6,) (3.76)
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Equation (3.75) being of second order, its solution (3.76) contains two
constants of integration, C and 6,. Defining a new constant e as e = Ch?/
G(m, + m,), (3.76) can be expressed as

W _ @_mﬁ'\sv: +ecos(@ — 8,)] (.77

The constant @, can be eliminated by choosing the polar axis so that 8, = 0
and the constant e can be evaluated from the total mechanical energy of the body.
Equation (3.77) is the equation of a conic section in polar coordinates r and 6
and may represent a hyperbola, parabola, ellipse, or circle, depending on the
value of e, which is known as the eccentricity of the conic section. The constant
e is evaluated as follows. It can be verified by employing (3.49) that the force due
to Newton’s law of gravitation is conservative. Hence, it has associated with it
a potential energy U. From (3.50), we get

_ _Gmm, U
f= T (3.78)
Choosing the reference position for the potential energy at infinity so that
U(e0) = 0 and integrating (3.78), we obtain

U(r) = % Gmymy 4, . _Gram,

r? r

oo

Using the equivalent mass, the potential energy per unit mass becomes

U(r) = I.QAS_ \|_| )

The kinetic energy per unit mass is given by
T = {v? = J(* + r*6?)

so that the total mechanical energy per unit mass becomes
E=T+U=4@¢+ ry) — E (3.79)

In (3.79), letting r?* = h*/r* and substituting for r from (3.77) and for #
obtained by differentiating (3.77), it can be verified that

|. NNSN _E
e = {1 (G £ T (3.30)

It should be noted that the central force is the only force in this caseand its being
a conservative force, the total mechanical energy (3.79) is conserved. A point of
the orbit where dr/df = 0 is called an apsis. For an open orbit such as a hyper-
bola or parabola, there is only one apsis but for an ellipse there exist two apsides.
The shortest distance from the force center to one of the apsides is called the
pericentron and the longer one is called the apocentron. Measuring @ from the
pericentron, we set 8, = 0 in (3.77).

Sec. 3.8 Orbits of Planets and Satellites 69

We now distinguish the following four orbits:

Case1: e > 1, E> 0. The orbit is a hyperbola that is an open orbit.
The particle comes from infinity as shown in Fig. 3.21, reaches the minimum
distance at the apsis where the potential energy has a minimum and, hence,
the kinetic energy a maximum, and escapes to infinity.

HYPERBOLA
e>]|

' PARABOLA
e=|

APOCENTRON PERICENTRON

ELLIPSE
O<ec<l

Figure 3.21 Four possible orbits.

Case 2: ¢ =1, E = 0. The orbit is a parabola that is an open orbit with
the lowest energy. At the pericentron r,, # = 0 and using (3.79), we get

E— Wﬁwmn _ G(my + m,) —
\.N
Letting v, = r 0 in the foregoing equation, it is seen that
v, = ﬁEQS (3.81)

rp

This velocity »,, which is called the escape velocity, is the minimum
velocity for which an open orbit is obtained.

i
i
§
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Case3: 0<e<1, —[G(m, + my))*2h* < E < 0. The orbit is an
ellipse. From (3.77), the pericentron and apocentron are obtained as

» = QAE_\NINT m,) A_ nﬂl mv (3.82)
r, = Qs_ﬂ - A_ w mv (3.83)

Case 4: e — 0, E= —[G(m, -+ m,)]*/2h*. The orbit is a circle which is
a special case of the elliptic orbit. For a circular orbit, the radial velocity / = 0
and there is a balance between the centrifugal and gravitational forces. Denoting
the velocity rd = v, and noting that in (3.77) we have e = O and h = rd = rv,,
we get

r

v, = ﬁEQ_\N (3.84)

On comparing (3.81) and (3.84), it is seen that the escape velocity is A/ 27..

Some of the results obtained in the foregoing had been discovered by
Kepler purely from observations of the orbits of planets around the sun before
Newton had formulated his law of gravitation. Kepler’s three laws of planetary
motion may be stated as follows:

1. Each planet describes an ellipse, with the sun located at one of its foci.

2. The radius vector from the sun to a planet sweeps equal areas in equal
m_Bom. - \% o % .

3. 'T'he squares of the periodic times of the planets are proportional to the
cubes of the semimajor axes of their orbits.

The first law states a special case of our results: Case 3, where 0 << e < 1.
The second law is proved by (3.59) and the third law can be easily verified for
elliptic orbits.

Example 3.11

A satellite is projected into space from the earth with a velocity v, at a distance r, from
the center of the earth by the last stage of its launching rocket (Fig. 3.22). The velocity
v, was designed to send the satellite into a circular orbit of radius r,. However, owing

Figure 3.22 Orbit of satellite.
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to a malfunction of the control, the satellite is not projected horizontally but at an angle
o to the horizontal and, as a result, is projected into an elliptic orbit. Find the perigee
and apogee of the orbit. (For an earth-centered orbit, the pericentron and apocentron
are called perigee and apogee, respectively.)

First, we consider the circular orbit for which

E 1 N|Q¢=_ + my)

=3 v . and 3 = GOny + my)

o ‘0

where m,; and m, are the masses of the satellite and earth, respectively. Since m; <
m,, my + m, =~ m, and the equivalent mass of the satellite becomes mm,/(m; + m,)
~ my, which is its actual mass. Eliminating v, for the circular orbit, we obtain

_ P G(my + m,)
E = 5 - (3.85)

o

Now consider the elliptic orbit. Let subscript 4 denote the apsis. Since at the apsis
F =0, we get

E— Few _ Gmy +my) (3.86)
2 ¥4

But according to the data, the energy from (3.85) is equal to that of (3.86). Hence,
L, |Q¢3 + my) _ IFQ@: + my)

= Vi > 5 . (3.87)

Since the elliptic orbit conserves the angular momentum,
(v,co8A)r, = vty
or
2,2 2
vy =2elo OB 2 Mww d where v2= Glmy + my)
A \c
Hence,
r, cos?
\c\m = QA§~ + ENVQ\.‘MQ Amwwv

Substituting for +% in (3.87) from (3.88) and simplifying the resultant expression, we get
r: —2rry+ricos?2a =0
The two roots of this equation are
rg=r, £ r,(1 — cos? a)t/2
=r,(1 + sin®)
Hence, the perigee and apogee of the orbit are
r, = r,(1 — sin &)

r(1 + sin &)

i

Ya

Example 3.12

A spacecraft is in a circular orbit of radius r, with speed v, around a body whose mass
center is at 0 (Fig. 3.23). Its engine is fired, thus increasing the speed of the spacecraft
from v, to tv,, where 1 < &% < 2. Show that the maximum distance r,, from O reached
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Vo

o,

Figure 3.23 Orbit of a satellite.

by the spacecraft depends only upon r, and &, and express the ratio r,,/r, as a function

of a.
For the circular orbit, we have
2 _ G(m; + m;) (3.89)

Vo
r,

For the elliptic orbit, we measure & from the pericentron A4 and let §, = 0 in
(3.77). Hence, at A4, 8 = 0 and from (3.77) we get

1 _ ﬁ: te) (3.90)

v,

At the apocentron, § = 180° and it follows that

Im

L Glmtm) g (3.91)

Adding (3.90) and (3.91), we obtain

1 1 2G(my + m,)
But G(my + m,) = v2r, from (3.89) and & = r,(v,). = r,0v,. Then (3.92) yields
1,1 2
T, Al
Hence,
1 172
=)
Im G2
r, 2—0a2

We get a real, positive solution for r,, only if 62 < 2, If 62 = 2, r,, — oo and
hence for a2 >> 2, there is no closed orbit and the escape velocity is reached.

Example 3.13

A spacecraft describes a circular orbit at a radius r, from the center of the earth.
Preparatory to reentry, its speed is reduced to a value v, so that it is placed in an elliptic
trajectory that intersects the earth’s surface. Determine the angle § where splashdown
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will occur. The radius of the earth is R. Neglect the drag after the spacecraft enters the
earth’s atmosphere.

First, it should be noted that there is drag on the satellite after it enters the
earth’s atmosphere. The subatmospheric flight is therefore no longer a central force
motion and the results of our analysis are not valid. An approximate answer can be
obtained by neglecting drag and it can serve as a guideline for more accurate formula-
tion of the subatmospheric motion.

Choosing @ as shown in Fig. 3.24, we set 6, = 0 in (3.77) and since at point A
of the elliptic orbit 8 = 180°, we get

1 Gm; + my)
=S

- -0

where h2 = r2v? for the elliptic orbit. Solving for e, we obtain

— QAS_ + Snv - \aﬁw
QAQ: + §Nv

o

e

Figure 3.24 Splashdown of satellite.

Substituting this value of ¢ and r = R for point B of splashdown in (3.77), it
follows that

1 — QQw: + §Nv QAS_ + SNV — \ee.w

R~ rmz T rind cos
Hence,
F . QAQ: + §Nv
cos§ — X rovy
G(my, + my) o P
(rov,)? r,

Since m; < m, where m; and m, are the masses of the satellite and earth,
respectively, it follows that G(m; -+ m,) ~ Gm,. Now, on the surface of the earth the
weight of m; becomes

wa:SN
me =g

that is, Gm, = gR?, where g is the acceleration of gravity. Then the angle @ is obtained
from
1 gR2

_ R (w)?
cosf = 72

(r,v,)?

-1
‘h
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3.9 SUMMARY

The first part of this chapter dealt with the formulation of the equations of
motion by the application of Newton’s second law. Both a single particle and a
system of particles have been considered and different coordinate systems have
been employed depending on their convenience. Next the principles of work-
energy and impulse-momentum have been studied. They provide quick answers
to many simple problems. Finally, the two-body central force motion has been
studied and orbits of planets and satellites are considered. The two-body
problem admits a closed-form solution and many systems can be adequately
represented by such a model. The motion of the earth around the sun may be
adequately studied by neglecting the effect of other planets. However, in
certain applications the motion of a system of » bodies has to be considered.
The n-body problem in general does not admit a closed-form solution and
computer simulation becomes necessary.

PROBLEMS

3.1. A bead of mass m slides under gravity along a wire bent in the form of a parabola
y=1 + ¢x? (Fig. P3.1).The coefficient of friction between bead and wire is u.
Friction force opposing the motion is zN, where N is the normal force. At the
same time, the wire rotates about y axis at constant angular speed @,. Obtain the
equation of motion of the bead by Newton’s law, employing the coordinate x
shown in Fig. P3.1.

e

0 Figure P3.1

2. A box of mass m, rests on a box of mass m, (Fig. P3.2). The coefficient of static
friction between the two boxes is 4, and the coefficient of sliding friction between
box 1 and the ground is #;. A horizontal force P is applied to box 1. If box 2 is
not to slip on box 1, determine the maximum value of P.

ma

Figure P3.2

e _ B e e a—
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. A barge of mass m,; with an automobile of mass m, on its deck is initially at rest
(Fig. P3.3). The automobile is now driven forward at a constant speed v, relative
to the barge. Neglecting the resistance of the water, determine the velocity of the
barge and the distance it moves when the automobile has moved a distance d.

- d
e —
m %

£ ™

!
-

Figure P3.3

3.4. A rod is rotating freely at speed @, about a vertical axis (Fig. P3.4). At time
t = 0, two sliders are released from rest at r = a. The mass of the rod is M, and
its moment of inertia about the centroidal axis is ;.; MLZ2. The mass of each slider
is m.

(a) Find the angular velocity of the system after the sliders come to rest at each
end of the rod.

(b) Find the loss of kinetic energy.

(¢) Where did the lost kinetic energy go?

(d) Set up the equation for finding the radial position of the sliders as a function
of time before they hit the stops.

STOoP

sToPF—— m}—] [m]

SLIDER SLIDER

Ls2 i Ls2
4

_
Figure P3.4

3.5. A ball of mass m moves on a frictionless table (Fig. P3.5). The ball is attached to
a rubber band that goes through a hole in the middle of the table and is fastened

RS
- N

Figure P3.5
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to the floor. The pull of the rubber band on the ball is proportional to the distance
between the ball and the hole. The ball is now held at a point r, away from the
hole and released at time r = 0 with a velocity », perpendicular to the rubber band.
(a) Obtain the subsequent motion of the ball and find its trajectory.

(b) Is there an escape velocity v, = v,?

3.6. Prove Kepler’s third law of planetary motion.
3.7. Show that the values »; and v, of the speed of an earth satellite at the perigee A4
and apogee B of an elliptic orbit are defined by

2 _ 2gRZ r

2¢R% r
v} = and cw|l|%|m‘_
re +ryry

Trntrn
where g is the acceleration of gravity and R, is the radius of the earth (Fig. P3.7).

Vi

V2
Figure P3.7

A space vehicle approaches Saturn along a hyperbolic trajectory of eccentricity
e = 2 (Fig. P3.8). As the vehicle reaches a distance r, closest to Saturn, retro
rockets are fired to slow the vehicle and place it in a circular orbit. Show that the
velocities of the vehicle just before and after firing of retro rockets are given by

1/2 1/2
vy = Awmgv and v, = AQﬂ\K\v
4 A

38

by

where M is the mass of Saturn.

Figure P3.8

3.9. A satellite in circular orbit around the earth at an altitude of 1130 km is to be given
a new orbit (Fig. P3.9). The engines are aligned radially, imparting an additional
velocity of 4 km/s to the satellite outward. Determine the eccentricity ¢ of the
orbit. Is the orbit open or closed ?
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DYNAMICS OF RIGID BODIES:
NEWTON'S LAW, ENERGY,
AND MOMENTUM METHODS

4.1 INTRODUCTION

This chapter is devoted to the study of dynamics of rigid bodies by the direct
application of Newton’s second law. A flexible body may be regarded as being
composed of an infinite number of particles and it has an infinite number of
degrees of freedom. By assumption, a rigid body does not deform and, hence,
the distance between any two of its particles is a constant. As a result, an
unconstrained rigid body has only six degrees of freedom: three translational
and three rotational.

Out of the six coordinates required to describe the motion of an un-
constrained rigid body, three can be chosen as the components of the position
vector of a reference point of the body. The remaining three, however, cannot
be chosen as the components of its angular displacement because, as seen from
Chapter 2, components of a finite angular displacement do not constitute a
vector. In the next chapter, dealing with Lagrangian dynamics, we employ three
Euler angles to describe the rotational motion of a rigid body. In this chapter
the six coordinates selected to describe the motion of an unconstrained rigid body
are the three components of the position vector of a reference point of the body
and the three components of its angular velocity vector. It will be seen that the
rotational motion of a single rigid body is uncoupled from the translational
motion by selecting the reference point as the center of mass of the body.

We begin this chapter with a brief discussion of kinematics and then
develop expressions for the linear and angular momentum of a rigid body. The

78
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principal axes and principal moments of inertia are discussed. The equations of
motion of a rigid body undergoing translation and rotation are derived. Euler
equations and modified Euler equations of motion are then studied. In the latter
part of this chapter, the principle of work and energy and the principle of
impulse and momentum are employed to analyze the motion of rigid bodies.
The motion of a gyroscope is then studied. Finally, the motion of a system of
connected rigid bodies is discussed.

4.2 KINEMATICS OF A RIGID BODY

The velocities of all points in a rigid body are found by knowing angular velocity
vector @ of the body and linear velocity of any point in the body.

We consider a rigid body which has angular velocity vector w with respect
to an inertial frame X YZ (Fig. 4.1). The coordinate system, Oxyz, has its origin
at a reference point, O, of the body and it rotates at ghe same angular velocity
@ as the body. Such a coordinate system, Oxyz, is called a body coordinate
system. Letting P be an arbitrary point in the body, its position from O is defined
by 7, which when decomposed in the xyz coordinate system becomes

=xi+ kw + zk 4.1)

The position vector R of the vo:: P with respect to the inertial coordinate
system X YZ is the vector sum of R, and T

iy Yy

R=R +7 (4.2)

Figure 4.1 Rigid body.
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The absolute velocity of P is
dR _dR,

V= —

dr
dr — dt +ar “.3)

After noting that 7 has been expressed in terms of a rotating coordinate system
in (4.1), we get

mm Ry +% + 228 (4.4)

In the foregoing equation, the first three terms vanish, since the distance
between any two points O and P of a :m& body is constant. As mroib by (2.58),
the last three terms can be expressed as @ X r. Denoting dR,/dt by ee which is
the linear velocity of the origin of the xyz coordinate system, (4.3) becomes

v=0,4+®Xr (4.5)
This equation could have been written directly from (2.64) by replacing v, by
v, and letting r = 0. The acceleration a of P with respect to the inertial coordi-
nate system is

4.6)

where a aoboﬂom the acceleration of the origin of the coordinate system xyz
and &8\& — w is the angular acceleration of the body. Substituting w X r for
dr/dt in (4.6), we obtain

— G OXTLDX(@XT) 4.7

" Again, the moamomzm.mncmwan could be written directly from (2.65) by replacing

a, by a, m:.m, letting r =r = 0.
The reason for selecting a body coordinate system is that the inertia
matrix to be discussed later is a constant with respéct to such axes. In some

cases, a amado&\ possesses axial symmetry with the result that two of its

principal moments of inertia are equal. In such cases, it is possible to choose a
coordinate system which has an angular velocity @ that is different from the
angular velocity Q of the body, and yet the inertia matrix remains constant with
respect to such axes as discussed later. Then, (4.5) and (4.6) are not valid for
determining the velocity and acceleration of a point of the body. Letting SE\W

denote the angular velocity of the body, with respect to the Homongno frame,
the angular velocity of the body is related to that of the coordinate system 3\

Q=0+ W (4.8)
From (2.64), the velocity of a point of the body may be represented by

v=v,+r+wXr
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In this equation, the relative velocity r r au X 7. Hence, we obtain
v =, + @y X “+mxw (4.9)

The acceleration of a point of the ,co&\ is obtained from (2.65) as

a=a, ._.x._.NExw._.ex F 4@ X (@ X 7)
In this equation, the R_mcﬁ mooo_ﬂmcon r becomes
r= Em\m X 7 ATSm\m X Qcm\w X 1)
waXwHNSXASmEX r)
Hence, it follows that
= me + mwm\m X7+ mwm\m X Amwm\m X wv + 20 X A&m\w X ﬂv
L OXTHAX@XT) (410

e

Example 4.1

A circular disk of BaEw Risrotating about a vertical axis i_afmzmc_mn velocity 8_ and
angular acceleration ;. Determine the velocity and acceleration of a point P at the
rim of the disk shown in Fig. 4.2.

Let xyz be a body coordinate wwwﬂoa whose origin is at the center of the disk C
and whose angular velocity ®; = 0, J, the body angular velocity. To determine the
velocity of P, in (4.3) we let v, — v, = 0 since the point C is a fixed point. Hence, we
obtain .

mHwaHS_MxwaIS_xm
The acceleration of P is obtained from (4.7) by letting a =a, = 0 since C is a fixed
point. Hence, we get

a=a,7 X Ri +w,j x(@j xR
— —a, Rk — w?RP

Figure 4.2 Rotating disk.
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Example 4.2

A rigid cone with apex half-angle @ rolls steadily without slip on a horizontal surface
so that it precesses about the vertical Z axis at a constant angular rate @,. The height
of the cone is /4 and its base radius is R. Determine (a) the velocity and acceleration of
point P at the base of the cone shown in Fig. 4.3, and (b) the velocity and acceleration
of C, the mass center of the cone.

The coordinate system OX YZ is inertial with the Z axis being vertical. The cone
rolls on the horizontal XY plane. In Fig. 4.3, xyz is a coordinate system with origin at
the fixed point O and rotating at constant angular velocity @, about the vertical Z
axis. Hence, the angular velocity of this coordinate system is written as @ = @, sin of
+ @, cos ak.

{a) In order to determine the angular velocity ) of the body, we first determine
the spin of the cone about the x axis. Letting this spin be @, 7, since the cone rolls
without slipping and hence point 4 has zero velocity, we obtain

B .
= w; =0
VA = Gosa Po T R
or
__h o, @,
@1 = " Rtosa “sing Pocosecd

The angular velocity of the body is then obtained as
Q = (w, sin @ — w, cosec ¥)7 + W, cos ok
and the angular velocity of the body relative to the rotating frame becomes
m.vm\m = —@, cosec or

In order to determine the velocity and acceleration of point P, we note that its
position vector ¥ = hi + Rk. Hence, we obtain

Wgr X F = @,R cosec 0f

hlhwm\w X Ahlhwh\m X m.rv = [SWNN cosec? Q\M
20 X Ahlhwm\w X m.'v = Neenwh — NSWNN cot Q;u.r
@ X (@ X ) = —w?cos &(hcos & — R sin &)

® X 7 =a,hcos & — Rsin )]

- - =

v, =@, =gy =@ =0
Substituting these results in (4.9) and (4.10) and simplifying the expressions, the velocity
and acceleration of point P are obtained as
v, = @,[Rcosec® + hcos & — Rsinalj
ms = w2 cos &[—2R cosec & — hcos & + R sin o}
+ w2[—R cosec? & + 2R + hsin & cos & — R sin? alk

(b) In order to obtain the velocity and acceleration of center of mass C, we note
that its position vector is 7 = 3 h7 . The velocity and acceleration are obtained by setting

3/4h

N

\TD wo

— T T T -
o
i

tx

-
e ——————

(b)

(a)

Figure 4.3 Cone rolling on a horizontal surface.
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R = 0 and replacing by 34 in the equations expressing the velocity and acceleration

of point P. Hence, we get
v, — 3hw, cos &t}
a, = —3 hw? cos? ai + 3hw? sin & cos ak

4.3 LINEAR AND ANGULAR MOMENTUM OF A RIGID BODY
4.3.1 Linear Momentum

We consider a rigid body as shown in Fig. 4.4, The mass center of the body
is C, and O is a given reference point. The total mass m of the rigid body is
written as

m = b_ dm @.11)

dm

Wy

£}

Wy

Figure 4.4 Rigid body.

Coordinate system xyz has its origin at the reference point O of the body
and it is rotating with respect to an inertial coordinate system at angular
velocity w, which is the angular velocity of the body. Hence, xyz is a body coordi-
nate system. The radius vector from the origin O to the center of mass C is
defined by

;= %.ﬁ 7 dm 4.12)
m body

Wouoo. it follows that if the origin O coincides with center of mass C,
then r, = 0. The linear momentum L of a rigid body is the vector sum of the
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linear momenta of the individual particles that make up the rigid body. We
consider a mass particle dm with position vector r as shown in Fig. 4.4. From
(4.5), the velocity of dm is given by

v = m= + oxXT
Hence, the linear momentum of the body becomes
MHma.T.S;T& X .—wa.i
and after employing (4.11) and (4.12), we obtain
L=me,+oxT7,)
= mo, (4.13)

The linear momentum of a rigid body therefore is the product of the total
mass and the velocity of its mass center. If the origin O coincides with the center
of mass C, then r, = 0 and L = mwv,.

L

4.3.2 Angular Momentum

The angular momentum of a mass particle dm of Fig. 4.4 is the moment
of its linear momentum about the origin of the coordinate system and is given
by 7 X (v, + @ X r)dm. The angular momentum of the rigid body about the
origin O is obtained as

manﬁxalraxv%
nlm“xT&frTx@xv% (4.14)

. If the reference point O of the body is a fixed point in inertial space, then
v, = 0 and we obtain

-

H = % 7 X (@ X r)dm  with O fixed (4.15)

If the origin of the coordinate system is located at its center of mass C
@i.e., if O coincides with C), we have [ dm = 0 and it follows that

B = ? X (@ X 7)dm (4.16)

where r is the position of mass particle dm from the center of mass. Equation
(4.16) is valid even though the moving center of mass has a velocity v,. The
Motivation for choosing the origin of the coordinate system either at its center
of mass or at a fixed point of the body, if such a point exists, becomes obvious.
The rotational equations of motion are uncoupled from the translational.
Henceforth, we shall assume, unless mentioned otherwise, that the origin of
Fo coordinate system to describe the motion of a rigid body has been selected
Judiciously in this manner.
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It can be easily verified that
T X (@ X 1) = i[p(@,y — 0,%) — 2(0.x — 0.2)]

+ 2@,z — @,y) — x(@,y — ©,x)]

+ klx(0.x — @,2) — y(@,z — ©,)] (4.17)
Substituting (4.17) into (4.15), we obtain

H =1iH,+ jH, + kH, (4.18)

where
EaHSL. C&N‘TNNV&EISL. VQ&EISL. xz dm (4.19a)
H, = ISL. xy &EITSL. (x2 +NNV&5|8L. yzdm  (4.19b)
H, = |8a._. RN&SISV._. \E&EITSN._. (x*+y¥dm  (4.19c)

Since

— [ G2+ 2dm 1= 2+ Pdm, — [ &+ 7 dm

I,=1,= l._.x\c dm
L,=1,= I...‘.SEN dm

I.,=1,,.= l.‘.s xz dm

we can rewrite (4.19a), (4.19b), and (4.19¢) in the form
H, I, I, IL.|(o.
H:=|I, I, I,jjo, (4.20)
H, L. I, I, |\o,

Equation (4.20) may be written compactly as a single matrix equation

{H}, = UL{w}, @.21)

where it should be noted that point O either coincides with the moving center
of mass C or is fixed in inertial space.

The column matrix {H}, contains the components of the vector H,,
whereas the matrix {w}, includes the components of the angular velocity vector
o. Tt may be noted that both A, and @ are independent of the orientation of the
xyz coordinate frame having its origin at O. However, the elements of the
matrices {H}, and {w}, depend on the orientation of the coordinate system. If a
different coordinate frame Ox’y’z’ is used, the vectors H, and ® will remain
unchanged but the column matrices {H'}, and {®’}, will have different elements.

The matrix [/], contains elements that are the moment and product of
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inertias of the body with respect to a particular coordinate system. If a different
frame Ox'y’z’ is selected, the resulting matrix [I'], will have different elements.
The matrix [1], is called the inertia matrix and its transformation law is similar
to that of a stress or strain tensor at a point.

In the foregoing development, it was assumed Emﬂ a body coordinate
system has been employed so that the angular velocity ® of the coordinate
system is the same as the angular velocity of the body. However, it was discussed
carlier that when a rigid body possesses axial symmetry it is possible to choose a
coordinate system which has an angular velocity @ which is differer.t from the
angular velocity Q of the body. In this case, from (4.9) the angular momentum
about the origin of the coordinate system of a mass particle dm is given by
X @ + Wpgp X T+ o x J&E Since we have Q = Sm\x.T 8 following the
foregoing procedure we find that (4.21) is modified as

{H}, = [11,{%, 4.22)

Example 4.3
For the rigid cone of Example 4.2, find the linear and angular momentung, of the cone
with the origin of the coordinate system located at (a) the fixed point O, and (b) the
moving center of mass C.

(2) First, we consider the rotating coordinate system xyz of Fig. 4.3 with origin
at the fixed point O. From Example 4.2 we know that the angular velocities of the
coordinate system and the body are given, respectively, by

® = w,sin &7 + w,cos ok
and
Q = (w,sin & — w, cosec )7 + w, cos ok

The velocity of the center of mass is given by

o

v, = 3hw, cos aj

From (4.13), the linear momentum of the cone becomes

=

L =mv, = }mhw,cos o]

It can be verified that for the coordinate system employed, the products of
inertia terms vanish and the diagonal inertia matrix becomes

[ L
l,=| 0
0 0 1],
s mR2 0 0
=| 0 mGEGR:+ 3h2) 0
Lo 0 m(3 R + $h2)

Substituting these results in (4.22), we obtain
25 mR2,(sin & — cosec o)
{H}, = 0
mG% R + 3w, cos o,
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(b) The linear and angular momentum of the cone are now obtained by employ-
ing a coordinate system whose origin is at the mass center C and whose angular velocity

is again
® = w, sin®&i + w, cos ok

as shown in Fig. 4.5.

,/b Wo

ik

3/4h
Figure 4.5 Cone rolling on horizontal
surface.

This coordinate system remains parallel to the Oxyz considered previously with
origin at O. The expressions for the angular velocity () of the cone and for the velocity
of center of mass C remain unchanged. Hence, the linear momentum of the cone is
still given by
L = my, = }mhw, cos a.j
From (4.22) the expression for the angular momentum becomes

mmwn = ﬁNH_nmbwn
It can be verified that the products of inertia terms vanish and the diagonal inertia
matrix [/]. is given by

2smR? 0 0
Ul =| O  mGR:+g5h?) 0
0 0 m(R? + £5h?)

Hence, the angular moment becomes
25 mR2w,(sin & — cosec )
{#}. = [I1{Q}. = 0
m(ZR? + & h)w, cosa

4.3.3 Parallel Axes Theorem of Inertia Matrix

There is an inertia matrix associated with every point of a rigid body.
Our interest is in obtaining the relationships between components of the inertia
matrix corresponding to different points of a rigid body but referred to parallel
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Z)

Figure 4.6 Paralle! axes theorem. 2

coordinate systems. Two parallel coordinate systems X, Sn_vmaa X,Y22Z, are

shown in Fig. 4.6 with origins at points 1 and 2 of a rigid body.
. Let x, = x; + a, y, = y, + b, and z, = z, + ¢. When the inertia matrix
[7], is known, the problem is to determine the inertia matrix [7],. We get

Lyw = [0} + 23 dm
= (51 + B + 1 + o) dm

=1, +2b ._.v: dm + 2¢ .—.N_ dm + (b* + cHm

= Na:: + NsAWE... -+ QNnv -+ 5A®N + qu

where x_, y,, and z, denote the position coordinates of the center of mass C
from the point 1. Also,

IL,.,= I,._.ENNN dm

= —[ 01 + 5z + o) dm

=1, — m(cy, + bz,) — mbc
. Similarly, expressions can be obtained for the other elements. Now, if
point 1 of the body coincides with the center of mass C,thenx, =y, =z, =0
and we obtain n
b+ c¢*  —ab —ac
[l =0.+m| —ab >+ a*> —pe (4.23)
—ac —bc  aq* + b2
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This result is known as the parallel axes theorem. We note again that the
origin of the coordinate system for the matrix [7], is at the center of mass.
Otherwise, (4.23) will be modified by inclusion of terms containing x., y,, and z..

Example 4.4

Consider the problem of Example 4.3, where the two parallel axes are located at the
center of mass C and the fixed point O, respectively. Here, we have a? = (34)?,
b = ¢ = 0. It can be verified that matrices [7], and [/]. listed in Example 4.3 do indeed
satisfy (4.23). Hence, one of the inertia matrices could be obtained by knowing the
other matrix and employing (4.23).

4.3.4 Translation Theorem for the Angular Momentum

The angular momentum of a body about any point P can be expressed in
terms of the linear momentum of the body and its angular momentum about its
center of mass. The angular momentum of the body about any point P shown in
Fig. 4.7 can be expressed as

H,= 7, % vdm

Figure 4.7 Angular momentum about
point P.

. ..: w Is the angular velocity of the body, the velocity of dm is given by
v =, + @ X r. Hence,

A H._.Wxﬁm:rmvxyas_

V4
nTwlvx@;&xy%

Now, Qw dm) X mn = wE X @ X .—w dm = 0 since the integral vanishes. It
follows that

H, =7, X my,+ ﬁ X (@ X r)dm (4.24)

P

Here, Smn = Mv the linear momentum of the body, and the second term on the
right-hand side of (4.24) is the angular momentum of the body about the
center of mass. We therefore obtain

4.25)

The foregoing result is called the translation theorem for angular momentum.

o
il
;glv
X
M i
+
g
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Example 4.5
We consider the rolling cone of Example 4.3. Obtain {H},, knowing {H}..
We have
(H}, = Foe X L + (H],
where 7 ,c = }h w,.. L = my, = 3mhw, cos &, and {H}, has been obtained in Example

4.3. Since 7, X L = (3h)2mw, cos ak, we obtain
£y mR*w,(sin & — cosec )
{H}, = 0
m(%R? + FhHw, cos & + Gh)2mw, cos &
It can be verified that this expression is identical to the one obtained for {H}, in Exam-
ple 4.3 by direct method.

4.4 PRINCIPAL AXES

It is often convenient to deal with rigid-body dynamic problems using the
coordinate system fixed in the body for which all products of snertias are zero
simultaneously; that is, the inertia matrix [I] is diagonal. The three mutually
orthogonal coordinate axes are known as principal axes and the corresponding
moments of inertia are referred to as the principal moments of inertia. The three
planes formed by the principal axes are called principal planes.

For principal axes, (4.21) assumes the simple form

H =Tl + jol, + ko, (4.26)
and the scalar components of the angular momentum vector Mn become
H, =ITw,, H, =lw, H, = lLo, 4.27)

. In order to determine the principal axes and the principal moments of
inertia, we consider the rotational transformation of the coordinate system.
Consider two systems of coordinates xyz and x;y,z; which have the same
common origin O but are rotated with respect to each other as shown in Fig.
4.8. Let the angular momentum when expressed with respect to the xyz and
*1Y12, coordinate systems be noted by {H} and {H},, respectively. Then {H}
and {H}, are related by the rotational transformation matrix [C] discussed in
Section 2.6. We have

{H}, = [C]{H} (4.28)

Where, as shown in Chapter 2, the rotation transformation matrix [C] is made
up of direction cosines between the xyy:z; and xyz axes. Substituting
{H}, = [I],{w}, and {H} = [I}{o} in (4.28), we obtain

Ui}l = [ClT){w)}
= [CICT [Clw} (4.29)
where [CT is the transpose of matrix [C] and [CF[C]is an identity matrix.
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N

Figure 4.8 Rotated coordinate sys-
X, tems.

Letting [Cl{w} = {w}, in (4.29), it is seen that
(1, = [CIUCT" (4.30)

We seek an orthogonal transformation matrix [C] that diagonalizes a
general inertia matrix [/]. Then from (4.30) we obtain

I, 0 0
[crlo L o |=UICT
0 0 I,
Equating the corresponding columns, we get the eigenvalue equation
Cy, Cyy
1SC, ¢ = [1]4C12
Aw_u AWHu

,«roﬂo lis1,, I,, or I,. This equation has a nontrivial solution only if det|[1]— 1|
= 0. This yields the characteristic equation
| L—1 I, L.
I, L—I1 I, |=0 4.31)
I, I, I.—1
This is a cubic equation in 7 which always has three real roots Iy, I, and I;.
These roots are the principal moments of inertia. Since [/] is a square- symmetric

real matrix, it can be shown that the eigenvalues of such a matrix are always
real. It will be shown later that the rotational part of the kinetic energy is given
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by o} [){w} > 0. Hence, matrix [I] is positive semidefinite. It can be shown
that the eigenvalues of a positive-semidefinite matrix are nonnegative. Hence,
(4.31) always has three real, nonnegative eigenvalues. If all three eigenvalues are
unequal, the directions of the three eigenvectors are mutually perpendicular
and are uniquely determined. In case the cigenvalues are not all unequal, the
principal directions are not uniquely determined. For example, if I, = I, # I,
the direction of principal axis associated with 75 is uniquely determined but any
direction perpendicular to direction of I, is a principal axis. The principal axis
associated with 7, is an axis of inertial symmetry. In case I, = I, = I;, any
three mutually perpendicular vectors form a set of principal axes.

The directions of the principal axes can be obtained by determining the
three eigenvectors corresponding to I,, I;, and I,, respectively. Normalization
of the eigenvectors, so that the length of each eigenvector is unity, then yields
the direction cosines between each of the principal axes and the axes xyz. The
principal axes are then the body axes for which the inertia matrix is diagonal.
When the angular velocity w of a rigid coav\ is directed along a principal axis
of inertia, the angular momentum vector A, and the © angular velocity vector
have the same direction. Otherwise, they have different directions, as seen from
(4.27). The diagonalization of matrices is covered in Chapter 6 and hence the
details are not given here.

Many rigid bodies have a plane of symmetry. For example, for the rigid
body shown in Fig. 4.9, the xy plane is a plane of symmetry; that is, for every
mass particle dm with coordinates (x, y, z), there exists a mass dm with coordi-
nates (x, y, —z). Hence, we find that the products of inertia terms

I,=1,=— yzdm =20

body

I,=1,6 = — zxdm =0
body

.

Figure 4.9 Rigid body with plane of
symmetry, z
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The inertia matrix with respect to the xyz axes becomes

I, I, 0
M=\l, 1, © 4.32)
0 0 I

It is noted that here the z axis is a principal axis with principal moment
of inertia I, = 7;. The other two principal axes, x; and y;, are obtained by
rotation through angle @ about the z axis as shown in Fig. 4.10. From Chapter
2, the rotation transformation matrix becomes

cos@ sinf O

[C]=|—sin@ cos@® O (4.33)
0 0 1
y
Y
X
2]
€]
O X
g Figure 4.10 Rotation about z axis.
From (4.30), we have
I, 0 O
0 I, O0)=I[CI]ICT (439 -
0 0 I,

where [C] is given by (4.33). The third column and third row of the matrices on
the left- and right-hand sides of (4.34) are identical. Equating the corresponding
elements of matrices on both sides of (4.34), we obtain the following three

equations:
I, =1I,cos*@ + I,sin? § + 2I,,sin @ cos § 4.35)
0=1,0(cos? 8 —sin* @) + (I, — I,) sin @ cos 0 (4.36)
I, = 1I,sin20 + I,cos2 @ — 21, sin @ cos 6 4.37)
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Expressing (4.36) in terms of 26, we obtain

Iy
.WANX - .«.v
The principal moments of inertia /; and I, are then evaluated by substituting
this result in (4.35) and (4.37) respectively.

tan 260 = (4.38)

4.5 EQUATIONS OF MOTION FOR A RIGID BODY

As mentioned earlier, an unconstrained rigid body has six degrees of freedom,
and six equations of motion are needed to specify its configuration. Three
equations may be chosen to represent the translation of the mass center, and
three equations for the rotation about the mass center. Let xyz represent body
axes with origin at the center of mass C as shown in Fig. 4.11. The angular
velocity @ of this coordinate system is the same as the angular velocity of the
body. Let m be the mass of the body, F the resultant of the external forces acting
on the body, and M, be the resultant moment of external forces and couples
about the mass center C. The equations of motion for the rigid body may be
written by direct application of Newton’s second law as >

dy _d,. > ds o
il L= N@:eb =miv, = F (4.39)
d - .

&Iﬂ n”gn AL..A.OV

y

x|

Figure 4.11 Motion of a rigid body. z

where v, is the velocity vector of the mass center C and A, is the angular
momentum vector given by (4.16). It is seen that by choosing the center of mass
C as the origin of the coordinate system, the rotational equations of motion
3.&9%8 uncoupled from the translational equations of motion (4.39). Since v,
and H, have been expressed in terms of a rotating coordinate system xyz with
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angular velocity o, it is seen from Chapter 2 that

&mh . 7
S‘fet iu,r \«(TSXe
= \Nv ] i+ k.\ IT (T A\Qnev. - @v.env.wr
+ (v, 0, — Sebw + (v, — e*ebm (4.41)
wﬁm BirBj+HE+®x 8, (4.42a)

Since the components of H. are given by (4.20), we get
H, =16, + 1,0, + 1.0,
H, = L0, + Lo, + 10, (4.42b)
H,= 1.0, + Lo, + Lo,
The inertia terms are constants with time as the axes xyz form a body coordinate
mv\mSB We also have
o x H IASEISFVTTASIIemv\LwASElSELw (4.43)
Substituting from (4.41) in (4.39), the translational equations of motion are
given by

!

m(, + v,0, —v,0,) = F, |

m, + v, —v.0,) = F, (4.44)

)

\
S@ + v,w, \eevl. |

Similarly, substitution ?05 (4.42a), (4.42b), and (4.43) in (4.40) yields
Naomva + Na.«.AQ.v.«. - eaeuv + NaNAomvu + exe.«.v

+ (I, — L)oo, + L{o] — o) =M,
Na.«.AQVH tT ewenv + N.«.QV.«. + N&NAQVN - eaev.v

+ (U, — Do, + L0} —ol) =M, (445)
N\KNA&H - SESNV \T NHNA&;! \T ekeNv + NNSN

+ U, — Do, + (@ —w))=M,

Equations (4.44) and (4.45) are the six equations of motion for a rigid body.

The moments and inertia terms in (4.45) are with respect to a body axes with
the origin at the mass center C. Sometimes, a rigid body may have a point O
which is fixed in inertial space. In such cases, the origin of the body coordinate
system xyz may be chosen as this fixed point O. It is seen from (4.15) that in

this case also the rotational motion is uncoupled from the translational one.
Equation (4.39) remains unchanged and it is seen from (4.13) that

’

v,=0v, +tOXr.=wxXr, since v, =0
and hence

-

D= X T EOX @ X T (4.46)

ISES
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which is identical to (4.41). In (4.45), the moments and inertia terms are now
with respect to a body axes with origin at the fixed point O.

4.6 EULER'S AND MODIFIED EULER'S EQUATIONS
OF MOTION

4.6.1 Euler Equations

A considerable simplification can be made in the general rotational
equations of motion if the body coordinate axes x, y, and z are selected such
that they are the principal axes with origin either at the mass center C, or at a
point of the body O fixed in inertial space (in case such a point exists). The
following assumptions are made:

1. The origin of the coordinate system is either at the center of mass C or at
a point of the body O fixed in inertial space.

2. The coordinate system xyz is a body coordinate system so that its angular
velocity @ is the same as the angular velocity of the body.

3. The axes are principal axes. s

Assumptions | and 2 have been made in the derivation of (4.45). But
assumption 3 is an additional assumption. With this choice of body axes, all
the product of inertia terms vanish and (4.45) reduces to

Lo, + I, — L)w,w, = M,
La, + U, — Lo,w, = M,
Nu&u \T ANN - Nuvenen = aw A

| \
where I, I,, and I, are the principal moments of inertias, @,, @,, and w, are the
components of the angular velocity vector w along the principal axes, and
M,, M, and M, represent the components of the moment vector M along the
principal axes.
Equations (4.47) are known as Euler’s equations of motion. These equations

are relatively simple as compared to (4.45) and are often used in describing the
rotational motion of a rigid body.

'

,
|
ﬂ_ (4.47)

4.6.2 Modified Euler Equations

We consider a rigid body which has at least two of its three principal
moments of inertia at the mass center equal (Fig. 4.12). We choose the principal
axis 1 as the axis of symmetry and imply that 7, and 7, are equal. We designate
the moment of inertia about the symmetry axis and about a transverse principal
axis through the mass center C by 7, and I,, respectively. Thus,

Nu HNE

4.48
Nn”b”\. A v
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AXIS OF SYMMETRY

2

Figure 4.12 Rigid body with an axis of symmetry.

We now discard assumption 2 made in the derivation of Euler’s equations
of motion and in (4.45) but retain assumptions 1 and 3. However, letting

@ = w, i + w,j + w;k be the angular velocity of the coordinate system, the
angular velocity Q of the body is restricted to be

Q= (o, + Sm\mvw + SNM + Sum (4.49)
where Sm\ww is the angular velocity of the body with respect to the coordinate

frame. The angular momentum vector is now given by (4.22) and the compo-

nents are
H =19Q, = I(w, + @gp/r)

H, =1Q, = Lo, (4.50)
H; = 1Q; = lw,
The rotational equations of motion are given by (4.40), where
% — 10+ 10+ I k+ o x H
Hence, the modified Euler’s equations of motion are obtained as
I(&, + nvm\mv =M,
Lo, + (I, — Dw,0; + 1,0gr0; = M,
I, + (I, — L)w,w, — Loprw, = M,

Equations (4.51) have an added flexibility of being able to specify the
spin Sm\ww in an arbitrary time-varying manner. Even though the axes do not
constitute a body coordinate system, the principal moments of inertia still
remain time invariant because axis 1 is an axis of symmetry. Any two orthogonal
axes in the plane perpendicular to axis 1 constitute principal axes. In some
cases, all three principal moments of inertia are equal, as, for example, when
the body is a sphere or cube with the origin of axes at the center of mass. In

}
\
v

(4.51)
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such cases, we can discard restriction (4.49) and specify the angular velocity {

-y

of the body quite arbitrarily and write the equations as H + w X H = M.

4.6.3 State-Variable Formulation of the Equations
of Motion

Since the rotational equations of motion are uncoupled from the transla-
tional ones, the Euler’s equations of motion (4.47) may be expressed in the
state-variable form as

. 1 1

W, = |HQQ — L)w,w; + H\vb

. 1

@, = —— U, — I)o,w, + %gn 4.52)
2 2

. 1 1

@; = —— U, — INww, + —M,
I, I,

where w,, w,, and w, are the state variables and M,, M,, and M, are the inputs.
The translational equations of motion (4.44) may also be expressed in the
state-variable form as

@x”%weulenenl»l%ﬁx ke
D, = 0,0, — V,0; + wwa (4.53)

. 1
U, = V00, — V0 + Mm.n
where v,, v,, and v, are three additional state variables and F,, F, and F, are
inputs. Equations (4.52) and (4.53) may also be combined in the form
Z}={fCcr, .., x5 Uy, .., Uux)} (4.54)

where {x} is a six-dimensional column matrix defined as

m.x.w - _lnc? @3, W3, Uy, Uy, CLH

and u,, ..., us represent the inputs. In order to express the general rotational
equations of motion (4.45) in state-variable form, they can be rearranged as

L I, I.|[o, gi(w,, w,, 0, M,)

I, I, IL,|{d,} =180, ®, 0, M)

L. I, I, ]l&, g:(w,, @,, @, M)

where g,, g,, and g, are nonlinear functions of their arguments and can be
defined from (4.45). Inverting the inertia matrix, the state-variable equations
are obtained as

@, g1 fi
Wy =[1"1482p = 1 /2 (4.55)
w, g3 fs



100 Dynamics of Rigid Bodies: Newton's Law, Energy, and Momentum Methods Chap. 4

Example 4.6
Obtain the equations of motion for the rigid cone of Example 4.2 which is rolling
steadily without slip on a horizontal surface.

The coordinate system xyz has its origin at the fixed point O as shown in Fig. 4.3
and its angular velocity @ is @ = @, sin &7 1 &, cos ok. The angular velocity of the
body is given by Q) = (w, sin & — w, cosec &) 7 + w, cos ak. It is noted that the x
axis is a principal axis and also an axis of symmetry. It is recognized that —w, cosec &7
is a constant spin about the x axis. In Example 4.2, the velocity of the center of mass
was obtained as v, = 3hw, cos & . Employing (4.44) for this example, we have

Vy =0, =0, =0, =0, =0, v, = $hw, cos &, w, = ®,sind,
W, = W, cos o, w, =0
Substituting these values in (4.44), we obtain
—3mwih cos? & = F,
0=F
Fmwihsin o cos o = F,

The forces that must be applied to maintain this motion are given by the fore-
going equations. The angular velocity vector A, for this problem was obtained in
Example 4.3. It is noted that the coordinate system consists of the principal axes and
that the angular velocity of the body satisfies the restriction (4.49). Hence, the equations
employed to describe the rotational motion are the modified Euler’s equations. Employ-
ing (4.51) for this example, we have

I =1, =3mR:, I, =1 =1 =mZR + )

D, =D, =D, =dgy =0, Wpg/r = —@, COSEC O

Substituting these values in (4.51), we obtain
0=M,

m(ZR? — 3h2) @2 sin o cos & — 3mR2®2 cosec & cos & = M,
5 o 10 Y

20
0=M,

The moments that must be applied to maintain this motion are given by the fore-
going equations.

Example 4.7

A rotor shown in Fig. 4.13 rotates about axis x at a constant angular velocity @,. The
rotor is dynamically unbalanced so that its principal axis x, is displaced at an angle 8
to the x axis. Determine the reactions at the bearings, which are a distance b apart, due
to the unbalance.

We assume that the rotor is statically balanced so that its center of mass C lies
on the bearing axis x. When the rotor is statically balanced but the axis of rotation is
not a principal axis, the rotor is said to be dynamically unbalanced. Coordinate system
xyz has its origin at the center of mass C and its angular velocity @ = @, . Axes system
x1¥12, consists of principal axes. We solve this problem first by employing the coor-
dinate system xyz and the general rotational equations of motion (4.45). This problem
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z .z,
?

Figure 4.13 Dynamically unbalanced rotor.

is then solved again by employing the principal axes coordinate system and axes
X1¥12;.

Employing the xyz coordinate system, we note, however, tha®z is a principal
axis and hence I, = I,, = 0 but 1., # 0. Now, we have Oy=W, =0, =0, =@,
= 0 and W, = @,. Therefore, from (4.45) we obtain

0=M,
0=M,
Nk.eean = gu

This moment M, is supplied by a pair of forces of magnitude F = (1/b) I,,w? on
the shaft at the bearings, which are a distance b apart. These reactions act parallel to
the y axis, as shown in Fig. 4.13. They retain a fixed orientation with respect to the body
coordinates xyz and thus rotate with the shaft at angular velocity @,7 . The reactions
Om. the shaft on the bearings are opposite in sign to those of the bearings on the shaft.
In addition, there are vertical reactions at the bearings due to the weight of rotor.

This problem may also be solved by employing the Euler’s equation of motion
.Q.Ad. Coordinate system x, y,z; consists of principal axes and its angular <o_0058w
is the same as the angular velocity of the body; that is,

o =w,cosfi, +w,sinbj,
Employing (4.47), we note that
L, =1, L, =1, =1, D3 =@ =y =dy =0,
w; =, cosb, w, = ,sinf
Hence, (4.47) yields
O = En
O == g 2
(L — I)w? sin B cos § = M,
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This moment Mj; is supplied by the reactions of the bearings on the shaft. The
reactions have magnitude (1/b)(/; — I,)®? sin @ cos §. Since the z and z, axes are
identical, it is expected that

I, = (I, — I)sin@ cos 8
This equality can in fact be proved by employing (4.35), (4.36), and (4.37).

Example 4.8

The essential structure of a certain type of aircraft turn indicator is shown in Fig. 4.14.
A rotor spinning at an angular velocity of w, rad/s (constant) counterclockwise as
viewed from the right is supported on two springs AC and BD, a distance b apart. The
plane executes a horizontal turn at angular velocity @, (constant) clockwise as viewed
from the top. The coordinate system xyz rotates with the plane. (a) Obtain the modified
Euler equations, and (b) determine the change in length of each spring from the equi-
librium position. Let &, be the spring constant of each spring.

Figure 4.14 Aircraft turn indicator.

(a) The coordinate system xyz has its origin at the center of mass of the rotor
and its angular velocity @ = —a,/. The angular velocity of the body is given by
O = —w,/ +w,i. Itis noted that the coordinate system xyz constitutes principal
axes and x is an axis of symmetry. Employing the modified Euler’s equations, we note

that

l. =1, L=1=1, W, =w, =0, w, = —m,,
W; =W, =W, =d; =0, Wy r = O, Wy =0
Hence, (4.51) yields
0=M,
0=M,
l.o,w, = M,

(b) The moment M, is provided by forces Fj and —F; acting on the rotor shaft
at B and A, respectively, as shown in Fig. 4.15. Here, F = (1/b)},®,,. Hence, spring
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Figure 4.15 Forces on the rotor shaft.

BD is compressed by an amount (1 [bk)L.w,, and spring AC is extended by the
same amount.

Example 4.9

A &mr.Om mass m and radius r is attached to the end of a rod OB of negligible weight
which is supported by a ball-and-socket joint at O as shown in Fig. 4.16. The rate of
precession of the disk about the vertical is observed to be @, (constant) and the angle
to be B. Determine the rate of spin @, of the disk about OB,

Figure 416 Spinning and precessing
disk. mg

.,E.mo coordinate system xyz has its origin at the fixed point O and its angular
velocity is @ = w, cos 7 — w, sin f7.

The axes xyz constitute principal axis and x axis is an axis of symmetry. The
angular velocity of the body is

Q = (®,cos B + w,)i — w, sin B}
In the modified Euler’s equations of motion (4.51), we have
L=1I, L=I=I, o =0,csf, 0y=o,
W, = ~®,sin @, =0, Dy =B, =3 = Dgp =0
Hence, (4.51) yields
0 =M,
0=M,
(I — L)} sin B cos B + Lw.w,sin f = M,
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Taking moment of forces about O, we obtain

s

M, — —bi x (—mgcos Bi + mgsin BJ)

= —bmg sin Bk
Equating the moments and then solving for @,, we obtain
I, — 1 _ bmg
W, ===, cos B Lo,

4.7 WORK-ENERGY PRINCIPLE FOR A RIGID BODY

The work-energy principles for a particle derived in Chapter 3 are also valid
for a rigid body. The only necessary modification concerns the expressions for
the kinetic energy and the work done by external forces. We consider a rigid
body and let xyz be a body coordinate system with origin at the mass center C
(Fig. 4.17).

Figure 4.17 Rigid body.

The kinetic energy of the particle with mass dm is defined by
dT = jv* dm = v - v dm (4.56)
but from (4.5) we have
v=v.+wx7r 4.57)
Substituting (4.57) into (4.56), we get
dT = Jo, - 0. dm 4 v, - (@ X r)dm 4 J@ X r) - (@ X r)dm  (4.58)
Integrating (4.58) over the entire mass m of the body we obtain (note that the

second term drops out, since .ﬁ 7 dm = 0)

ﬂuwsy.mlﬁi@xv.ﬁxv&s (4.59)

We can notice from (4.59) that the kinetic energy of a rigid body consists of
two parts: that is,
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T=T +T, (4.60)

where
T, = fmv, - v, 4.61)
L=} @x7)-@x7)dm (4.62)

Here, T, refers to the kinetic energy of translation and 7, is the kinetic energy
due to rotation of the rigid body computed in the reference frame translating
with mass center C.

From the properties of a triple vector product and (4.16), we have

a.mhnba.mx@xvzsn% @ X 7))+ (@ X F)dm

= 2T, (4.63)
or

-

T,=iw-H, (4.64)
We can easily evaluate (4.64) as
N..\ = .M.ANXSW IT N&SW IT NNSWV IT NN&SXS.«. l+l N&NS%SN IT NNNSNSN AA.QMV

If the reference frame xyz refers to the principal axes frame with origin at
the mass center C, then (4.64) is reduced to the following fm:

T, = WAN_SW + Lo} + Lw3) (4.66)
In matrix notation, we get
T = fmiv v} + Hol {0} (4.67)

We denote the resultant of all external forces by F and M, refers to the
resultant moment of the external forces and couples acting on the body about
the mass center C. Then,

e _, - 3 . -
h Fovodi+ [ "M, 0di=w,, (4.68)

1

Equation (4.68) represents the work done by all external forces and couples in
w_uo time interval from ¢, to ¢,. We know that work done is equal to the change
in Kinetic energies T, and T}, : that is,

Wi,o=T —T, (4.69)

In (4.68) for the first term we can write

s - Veg Y
.ﬁﬁ.eh&HS.ﬁ v, - dv, = Im(v? — v}
Ve

1

= ANJNL - NJ_:V AA..\OV
Next, from (4.40), (4.62), and (4.64) we obtain
[ . -
b M, -&odi=T,, —T,, @.71)
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We can notice that the work done by external forces produces a change in the
kinetic energy of translation of the body, whereas the work done by the resultant
moment of the external forces and couples about C leads to a change in the
rotational kinetic energy of the body.
In case all the impressed forces are conservative and their potential is
denoted by U, then
T+ U= E = const. 4.72)
or
T, 4+ U, =T,+4+U, 4.73)

This is the principle of conservation of mechanical energy. In case the body
has a point O fixed in inertial space and the origin of the coordinate system xyz
is this point O, then v, = 0 and the expression for the kinetic energy becomes

T = o} ]{w} (4.74)

so that the kinetic energy may be regarded as due entirely to the rotational
motion of the body about the fixed point. In (4.74), the inertia matrix [[], is
about the fixed point O. As in the case of the modified Euler’s equations of
motion, if the body has an axis of symmetry, we may let @ be the angular
velocity of the coordinate system and Q be the angular velocity of the body.
Following the procedure outlined in the foregoing, it can be shown that the
rotational part of the kinetic energy becomes

T, = QY IiQ} (4.75)

Example 4.10

A sphere of mass m and radius r rolls without slipping inside a curved surface of radius
R as shown in Fig. 4.18. The sphere is released from rest at § = 7/2. Obtain an expres-
sion for the velocity of its center of mass as a function of angle 8.

Figure 4.18 Sphere rolling without slipping.

The expression developed for the kinetic energy is given by
T= WSmenwﬂmcnw + wﬁewﬂ_”\“_mew

We have here a case of plane motion and the second term in the foregoing equa-
tion becomes }(2mr2)w?. Since the sphere rolls without slipping, », = rw. Also,
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wr = —(R — Jm. Hence, in terms of §, the kinetic energy becomes

T=ym(R 1262 + JGmri(R 1) g
= Hm(R — 242
The expression for the potential energy is given by
U=mg(R—rX1 —cos @)

Since .Eo cylinder rolls without slipping, friction does no work and the system is con-
servative. Hence, T -- ¥V = constant. Now, when 0 =n/2, T = 0, and U=
mg(R — r). Hence, it follows that T + U = mg(R — r); that is,

&Hm(R — N2 + mg(R —r)(1 —cos @) = mg(R — r)

or
Tom(R — r)202 = mg(R — r)cos 8
Hence,
_[10_& a1z
6 ﬁ R — cos Ql_
0o = —(R~nNbi,= — 102(R — r) cos 911427,
Example 4.11

Obtain the kinetic energy of the precessing and rolling cone of Examples 4.2 and 4.3,
In Example 4.3, the expression obtained for the angular velocity of the body is

Q = (@, sin @ — w, cosec a)7 + ®, cos 0k

. mac_ow;cm the coordinate system of Fig. 4.3 with origin at the fixed point O, and
noting that », = 0, we get ’

T = HQ[1},{)
where in Example 4.3, [1], is given by

HmR? 0 0
[11, = 0 m(5 R 4+ $h2) 0
0 0 m(%5R? + 3h2)

Hence, we obtain
T = }(ZHmRH)w? (sin o — cosec a)> + 3m(HR? + h)wE cos? a
Alternatively, employing the Cxyz coordinate system of Fig. 4.5 with origin at the
center of mass, we get
T = im{v} (v} + HOQY Q)
where from Example 4.3, we have

ve=23hcosoj
TomR? 0 0
Ul={ O m(Z R + 3 h2) 0
0 0 mGHRE + Sk
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Hence, we obtain
T = tmwi(3h)* cos? & + $(FHmR?)wj(sin & — cosec &)?
+ 3m(F;R? + Fh2)w? cos? a

It is verified that the expressions obtained for T by both methods are identical.

4.8 IMPULSE-MOMENTUM PRINCIPLE FOR A RIGID BODY

Integration of the force equation (4.39) with respect to time yields the theorem
that impulse of a rigid body is equal to the change in momentum; that is,

-

[P dt = mo (1) — (0] (4.76)

Similarly, integration of the moment equation (4.40) with respect to time
yields the theorem that angular impulse for a rigid body in general motion is
equal to the change in angular momentum as

% "M, di = H(t) — Bt (4.77)

Example 4.12
A cross of mass m is made of two uniform equal rods, each of length 2b. Tt is sus-
pended from a ball-and-socket joint at O [Fig. 4.19(a)]. It was at rest when hit by a
force of constant magnitude F, and time duration A¢ in the positive z direction at the
end A. Determine the angular velocity @ of the cross immediately after impact.

The free-body diagram of the cross is shown in Fig. 4.19(b). Taking moments
about the fixed point O, we get

.?Nsn@w — b7) % (F, Atk) = —bF, At] — bF,Ar7

Ryj
0 X mxlm'
— Fo
b wa
z | — A T | —
b
4
b b
\ - — mg
(a) (b)

Figure 4.19 (a) Body subjected to impulse; (b) free-body diagram.
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The coordinate system xyz consists of principal axes. In (4.75) we let £, = 0
and r, = Ar. Hence, !

Hyt) = 1w, 7 + L,w,] + Lok

= —bF,Ati — bF, At}
where

1= 3(F)ewe + (5)p2 = gms2
m

1 = 5 (F )ty = pmb2

Hence, immediately after impact, the angular velocity vector is obtained as

-6 NHQDN

w, 7 mb

e.t - l@NﬂnDN

w, mb
0

4.9 GYROSCOPE

T rw 83_. gyroscope is applied to any rotating rigid body in which the orientation
of :m. axis of rotation changes. The problem is three-dimensional and can be
described by the general principle of angular impulse and momentum for a ri id
body with respect to a fixed point. :
We o.onwaoa a rotor of the given diameter 3-3' located in the two gimbals
as shown in Fig. 4.20. To define the position of the rotor, we select a fixed
reference frame OXYZ, with the origin O located at the mass center of the rotor

OUTER GIMBAL

INNER GIMBAL

ROTOR

Figure 4.20 Gyroscope.



and the Z axis directed al i i
uter ooy along the line defined by the bearings 1 and 1’ of the
The rotor may attain any arbitrar iti i
. Y position by (1) a rotation of the out

MUMBU& through an angle ¢ about the axis 1-1", (2) a rotation of the inner m_.BcMM
ﬂraocmw 0 m,coi BB, and .Auv a rotation of the rotor through ¥ about 2-2’ a5
shown in Fig. 4.21. The derivatives é, 0, and ¥ refer to, respectively, the rate of
precession, the rate of nutation, and the rate of spin of the gyroscope

X

Figure 4.21 Euler angles of gyroscope.

. c,\.o consider a Hoa&zm system of axes oxyz attached to the inner gimbal
with axis x m_.oumpwlw , axis y along BB’, and axis z along 2-2'. We express the
angular velocity €} of the gyroscope with respect to the fixed reference frame

OXYZ. Thus,
) Q=¢K+67 vk (4.78)
where X is the unit vector along theZaxis and 7, 7,and & refer to the unit vectors

along the rotating axes, which are the principal axes for the gyroscope.
We resolve the unit vector X into components along the x and z axes:

K= —singi + cos Ok (4.79)
Substituting (4.79) into (4.78), we obtain
Q=—4sin0i + 6] + W + §cos Ok (4.80)

The angular momentum A, is obtained by multiplying the components of
€ by principal moments of inertia of the rotor. Let I, be the moment of inertia
of the rotor about its spin axis and /7, its moment of inertia about transverse axes

through O. Since {H}, = [[]{Q}, we obtain
H = —I¢sin i+ 18] + L(y + ¢ cos O)k (4.81)
Since the rotating axes are attached to the inner gimbal and do not spin,
we express their angular velocity as

® =¢K + 6 (4.82)
Substituting from (4.79) in (4.82), we get
w=—¢sinbi +0j + ¢cos Ok (4.83)

The rate of change of the angular momentum is given by

a% — 10,7 + 10,7 + LOK + o x H,

Substituting for h.uv H,, and ® in this equation from (4.80), (4.81), and
(4.83) and the resulting expression in (4.40), we obtain the three nonlinear
differential equations of motion given by

M, — —I(¢ sin § + 20 cos 8) + 1,67 + ¢ cos§)

x

M, = I(6 — ¢?sin 0 cos 0) + I,¢ sin 6y + ¢ cos 6) (4.84)

M, = I(y + ¢ cos 8 — B¢ sin 6)

We note that the modified Euler equations (4.51) for a body with an axis
of symmetry are expressed in terms of angular velocities about orthogonal axis.
Equations (4.84) for a body with axis of symmetry are expressed in terms of
angular positions, but the rotations are not about three orthogonal axes. The
angles ¢, 6, and y are called Euler angles and they can be employed to describe
the motion of a body with an axis of symmetry. Another method which is
commonly employed for the selection of Euler angles, and which does not
depend on the body having an axis of symmetry, is described in Chapter 5.

4.10 SYSTEM OF CONSTRAINED RIGID BODIES

So far we have studied the dynamics of a single rigid body. In some practical
applications, we encounter a system of rigid bodies that are connected or coupled
to one another in some manner. The connections or couplers eliminate some of
the degrees of freedom that a rigid body would have otherwise and the equations
of motion of the rigid bodies become coupled. Some examples of a system of
connected rigid bodies include rail vehicles forming part of a train and articulated
road vehicles such as tractor—semitrailer systems. In the following example, we
give the derivation of equations of motion that can be employed to investigate
the lateral stability or “jack-knifing” of tractor-semitrailer vehicles.



Example 4.13

Equations of Motion for the Lateral Stability of a Tractor—Semitrailer.

The sprung masses of the tractor and semitrailer are assumed to be rigid bodi
For the study of lateral stability, the bouncing, pitching, and rolling degrees of fr d -
of both the tractor and semitrailer are neglected. The pitch angles are usually ver oom oﬂ
and can be neglected, but the effect of roll on tire loading can be introduced Hw _B .
stage through semistatic load transfer. e ata fater

The coordinate system xyz is fixed to the center
Qmsm_mﬁm and yaws with the tractor at its yaw angular velocity @,. A coordinate s stem
X2V225 I8 m.xoa to the center of mass of the semitrailer and it translates and wmiw with
the semitrailer at its yaw angular velocity w,. The axes z and z3 are vertical and point
downward. These coordinate systems are illustrated in Fig. 4.22. The 3_&2@@ m:
angle between the tractor and semitrailer is denoted by y. The position of the ooaow sm
mass of the semitrailer relative to the center of mass of the tractor is determined by :Mvm

of mass of the tractor and it

—

y2

4 = —F
| ! 3_
A.IUN I.'ArU_

bs
Ew 4 <<~

Figure 4.22 Diagram showing the main components of tractor-semitrailer.

fifth-wheel constraint. Hence, the translation of the semitrailer is expressed in terms of
the xyz coordinate system.

Tt is assumed that the suspension is rigid enough that the forces at the wheel-
road interface are directly transmitted to the sprung masses. Let F; and D, denote the
side and driving forces, respectively, acting at the ith wheel. A braking force is obtained
by changing the sign of D,. The slip angle is defined as the angle between the velocity
yector of a wheel and the vertical plane of the wheel. Let &; denote the slip angle of the
ith wheel as shown in Fig. 4.22. Tandem axles can be included by modifying the equa-
tions. It is assumed that the steering angle J is the same for both front wheels. The
components of the fifth-wheel constraint force in the x and y directions are denoted

by F.x and F,.

Equations of motion of the tractor. With reference to Fig. 4.22, the trans-
lation of the tractor in the x and y directions and its yaw about the z axis are expressed
by the following equations in terms of the rotating coordinate system xyz, which has
angular velocity @ = w,k:

ms, — v,®;) =(D; + D,)cos § — (Fy + F)sind + D; + Dy — F,, (4.85)
m(s, + v,0,) = (D, + Dy)sind + (F, + F)cos d + Fy + F, — F,, (4.86)
Ly, = —(F, — F)dysind + (D, — Dy)d, cos & + (F, + Fy)by cos §
+(Dy + Dybysind + (D3 — Dy)ds — (F; + F)b, + F,,bs
(4.87)

I

Equations of motion of the semitrailer. First, the acceleration of the center
of mass of the semitrailer is obtained in terms of the rotating coordinate system xyz
as follows. The acceleration of the semitrailer center of mass relative to the fifth wheel
becomes

Ase = MK X (—by cos PP -+ by sin pJ)
1+ @3k X [,k X (—by cos Pi + by sinp)))
= (b4l cOS Y — by, sin )7 — (by? sinp + by, cos p)j (4.88)
The acceleration of the fifth wheel is expressed by
a, = (0, — 0,07 + @B, + 0,0,)] + Dk X —bsi
+ @k X (k X —bsi)
= (b, — v,0; + SSWVWIT @y + va0; — byhy)] (4.89)
The acceleration of the semitrailer center of mass is obtained by adding (4.88) and
(4.89) as
a, = (0, — v,01 + b0} + b3 cosy — by, sin Ew
+ By 4 vy — by, — by@isiny — by, cos P)J (4.90)

The translation of the semitrailer in the x and y directions and its yaw about the vertical
z, axis are now obtained as follows:

SuA®N — v,y + @uew + @hew Cosy — @Aﬁmvn sin U\v
= F,, + (D5 + Dg)cosy 4 (Fs + Fg)siny (4.91)



Suﬁm! + v, — &uem — vhew sin ? — &hQ.VN cOos V.v
= F., — (Ds + Dg)siny + (Fs + Fg) cos 4.92)
Nuamvn = @hmﬂnk sin V. + &hmﬂnv. Cos V. — @uANﬂu + Nﬂmv + &mﬁbm — bmv AAV.va
Equations of motion of the tractor-semitrailer. Adding (4.85) and (4.91),

and (4.86) and (4.92), respectively, the translation of the tractor-semitrailer in the x
and y directions is expressed by

(m, + m)®, — v,@,) + myb;w? + b2 cos y — by, sin p)
= (D, + Dy)cos & — (Fy + F)sind + D3 + D, + (Ds + Dg) cos p
+ (Fs + Fg)siny (4.94)
m; + m)(©, + v@;) + m(—bsd; — by@%siny — by, cos P)
= (D, + Dy)sind + (F, + F)cos § + F3 + Fy — (D5 + Dg)siny
+ (Fs + Fs)cosy (4.95)
Substituting for F,, in (4.87) from (4.86), the tractor yaw equation becomes
I, + mbs(i, + v,01) = (by + by)(Dy + D,)sin d
+ (by + b3)(Fy + F)cos & + (b; — by)(Fs + Fy)
— dy(Fy — F,)siné + dy(D; — D;)cosd
+ds(D3 — Dy) (4.96)

Substituting for F,, from (4.85) and for F,, from (4.86) in (4.93), the equation for the
semitrailer yaw is obtained as

I, + bym (6, — v,@01) sin Y + (8, + v.W1) cos ]
= ds(Ds — Dg) — bs(Fs + Fs)
+ by sin P[—(Fy + F)sind + (D, + Dj;)cos & + D; + D]
+ by cos Y[(Fy + Fz)cos & + (D, + Dy)sind + F;3 + F,] 4.97)

Hence, the translation of the tractor-semitrailer is represented by (4.94) and
(4.95), the yaw of the tractor by (4.96), and the yaw of the semitrailer by (4.97).

To complete the formulation, a mathematical model of the pneumatic tire
should be employed to obtain expressions for the driving and side forces. For further
details, the reader may consult reference [7].

4.11 SUMMARY

The major objective of this chapter has been the derivation of the equations of
motion of a rigid body by direct application of Newton’s second law. It is seen
that the moment of inertia matrix becomes time invariant when a body coordi-
nate system is employed (i.e., the angular velocity of the coordinate system is
the angular velocity of the body). However, when a body has an axis of sym-

city of the coordinate system

it i ible to choose the angular velo . ;
ey, L P on ; y and still have the inertia

that is different from the angular velocity of the bod

trix time invariant. . ..
™ In the study of dynamics of a rigid body, the best choice for the origin of

the coordinate system is either the center of mass of the anv.\ oﬂ_m nﬂ_.:ﬂr:mwmmw
that is fixed in inertial space, in case such a point does ox_mr:: this _ :o:mw
the rotational equations of motion are cs‘no:ﬁ_oa .?oB the :m:m_mﬁ. na
equations and may be studied mowmﬂ.mg_v\, if so desired. ‘_,Jo :_m:mm _ﬁo 2
equations of motion, however, remain coupled 8.%0 rotationa ow:m _%o:
through the angular velocities of the coav\.. ‘;o rotational mn:m:o%m oﬁ Boﬁﬁ:
may be further simplified by mo_oo:wm So. principal axes for the coordinate sy

i ler’s equations of motion. o
* aoﬂw:_% _Hmowﬁmum: o%z:m chapter has cog o.o:ooﬂ:oa with the mvv:mmﬁ._o.w
of work-energy and impluse-momentum principles to :6. dynamics o .:m__o
bodies. By employing these principles, answers can be .ogm_:oa to .moBoﬂm._Bm
problems without formulating and solving the onmm:o:m of motion. ﬁ_.=m <m,
gyroscopic motion has been discussed. The rmmﬁm:m_m: method of m%ﬂé ﬁ_OM:MQ
equations of motion for rigid bodies by employing Euler angles will be stu

in the next chapter.
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ping on a horizontal surface with variable angular speed

i ithout sli . :
At P i fxed hown in Fig. P4.1. Determine the velocity

. The point P is fixed to the disk as s
and acceleratian of P.

Figure P4.1

e with respect to the xyz coordinate system m:. its
he following. Locate the principal
x axis is longitudinal and

/3. The inertia matrix of an airplan . .
mass center as shown in Fig. P4.2 is given In t
axes and the principal moments of inertia. Note that the

the y axis is lateral.
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. Figure P4.5 X

/4.6. Solve Problem 4.5 but employ the principal axis coordinate system xyz with
origin at the moving point O, as shown in Fig. P4.6.
y
X Figure P4.2

4.3. One end of a slender uniform rod of mass m and length L is welded to a shaft

rotating at a constant angular speed as shown in Fig. P4.3. Determine the moment RN (U
exerted by the rod on the shaft in terms of m, L, f, and ,. Rod radius is a.

y X

Figure P4.6 x

7. A (a X a) square plate is pinned at one corner and released from the position
shown in Fig. P4.7. Use the principle of conservation of energy to obtain the
i i i f motion.
Figure P4.3 differential equation o

4. A disk of mass m and radius R is welded to the shaft of a motor which is fixed to
a turntable. Initially, the turntable is rotating at the rate w, = 40 rad/s and the
motor is rotating at w, = 100 rad/s, as shown in Fig. P4.4. If the turntable is now
accelerated at a constant rate of 10 rad/s2, what force and moment will the motor
shaft exert on the disk?

y

) a
Figure P4.7 O

_’ - 0 .
4.8. A solid homogeneous cylinder of radius r, rolls without slipping on a ow_Em:.op_
HENAY: surface of radius R (Fig. P4.8). If the cylinder starts from rest at 6 = 0, determine
- U/ . the angle 8,, where it will lose contact with the cylindrical surface.
— ]
> =h

@
fw Figure P4.4

The assembly shown in Fig. P4.5 is rotating about the vertical axis at a constant
speed @,. The slender bar of mass m is supported by a pin at a point O. Derive
the equation relating the constant angle @ to m, L, @,, and g. Employ the principal
axes coordinate system xyz with origin at center of mass C.

4.5

Figure P4.8
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LAGRANGIAN DYNAMICS

5.1 INTRODUCTION

In the previous chapters, the derivation of the equations of motion has been
based on direct application of Newton’s laws. This chapter deals with the
formulation of the equations of motion by employing variational methods. The
variational techniques provide an elegant formulation by employing principles
containing physical quantities whose definition does not depend on the use of
a particular coordinate system; that is, the variational form is invariant under
coordinate transformation. The principles of variational dynamics, including
Hamilton’s principle and Lagrange’s equations, are analogous to similar
physical principles in other areas of engineering, such as the principle of mini-
mum strain energy and Castigliano’s theorems in elasticity.

There are several advantages in employing variational methods in
dynamics. These are as follows:

1. The system of particles and rigid bodies is considered as a whole rather
than being separated into its individual components.

2. Problems are formulated in terms of kinetic energy and work, both of
which are scalar quantities.

3. Forces of constraint that do not perform work are not included.

4. Use of generalized coordinates, instead of physical coordinates, affords
case and makes the formulation versatile.
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4.9. A shaft is rotating about the vertical axis at angular speed @, and angular acceler-
ation @, = &, (Fig. P4.9). Two bars of square cross section (a; X a;) and
(a; X ay), respectively, are pin-jointed at 4 and B. Derive the equations of motion
of both bars.

_ Figure P4.9
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LAGRANGIAN DYNAMICS

5.1 INTRODUCTION

In the previous chapters, the derivation of the equations of motion has been
based on direct application of Newton’s laws. This chapter deals with the
formulation of the equations of motion by employing variational methods. The
variational techniques provide an elegant formulation by employing principles
containing physical quantities whose definition does not depend on the use of
a particular coordinate system; that is, the variational form is invariant under
coordinate transformation. The principles of variational dynamics, including
Hamilton’s principle and Lagrange’s equations, are analogous to similar
physical principles in other areas of engineering, such as the principle of mini-
mum strain energy and Castigliano’s theorems in elasticity.

There are several advantages in employing variational methods in
dynamics. These are as follows:

1. The system of particles and rigid bodies is considered as a whole rather
than being separated into its individual components.

2. Problems are formulated in terms of kinetic energy and work, both of
which are scalar quantities.

3. Forces of constraint that do not perform work are not included.

4. Use of generalized coordinates, instead of physical coordinates, affords
ease and makes the formulation versatile.
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It should be noted that in some cases, the values of the constraint forces are
required for the purpose of stress analysis and design. In such cases, it becomes
necessary to employ additional formulation, such as Lagrange multipliers, to
include constraint forces or application of Newton’s law.

In this chapter, we first discuss generalized coordinates, degrees of freedom,
and constraints, Next, the principle of virtual work and Hamilton’s principle are
considered. Then the derivation of Lagrange’s equations of motion and Hamil-
ton’s equations is described. In the earlier parts of the chapter, the applications
are restricted to a system of particles only. In a later part of the chapter, we
define Euler angles. These are then included among the generalized coordinates
for the study of dynamics of rigid bodies.

5.2 GENERALIZED COORDINATES, DEGREES OF FREEDOM,
AND CONSTRAINTS

The position of a system of particles is called its configuration. A set of coordi-
nates is called complete if their values corresponding to an arbitrary admissible
configuration of the system are sufficient to locate all parts of the system. A set
of coordinates is called independent when all but one of the coordinates are
fixed, there still remains a range of values for that one coordinate which corre-
sponds to a range of admissible configuration. If # number of coordinates form
a complete and independent set, the degrees of freedom of the system is said to
be n.

In a dynamic system, kinematic constraints often arise due to the relation-
ships among displacements. A single unconstrained particle has three degrees of
translational freedom. In a system of N particles, if there are R constraints, the
degrees of freedom of the system is given by n = 3N — R.

The choice of generalized coordinates is not unique. Generalized coordi-
nates may include physical coordinates but they may also include angles, func-
tions of physical coordinates, and other variables which have no association with
physical coordinates. However, the number of generalized coordinates is equal
to the degrees of freedom. Hence, when the degrees of freedom is n, generalized
coordinates ¢4, . . ., g, form a complete and independent set.

Example 5.1

To illustrate dynamic system with constraints, we consider a rigid body connected to
a fixed point by a massless spring. In three-dimensional space, the configuration of the
body would be described by six coordinates: three translations and three rotations. In
this case, the degrees-of freedom for the system are six. Let us suppose that the system
is constrained and it undergoes motion in the xy plane only, as shown in Fig. 5.1. The
rigid body in plane motion configuration would require three coordinates. These coor-
dinates may be r, 8, @, or x, y, ¢. The degrees of freedom for the system are reduced
to three. Other choices for coordinates are possible. However, the number of coor-
dinates will always be three. Now if the flexible spring is replaced by a rigid bar of
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Figure 5.1 Rigid-body motion. X \

Figure 5.2 Rigid-body motion.  x

fixed length a as shown in Fig. 5.2, two additional constraints are introduced. These are
r=a, ¢=0 ;.1

The number of coordinates required to describe the system is reduced to one.

5.2.1 Constraints

Sometimes it is not possible to eliminate the excess coordinates by employ-
ing the constraint equations. In that case, the number of coordinates employed
is greater than the number of degrees of freedom. Suppose that we choose M
coordinates x;, X,, ..., X to represent the configuration of a system. These
M coordinates are not independent but are related by R constraints. A general
form of constraint is expressed in the form of differentials called Pfaffian. In the
form of Pfaffians, let the R constrained be given by

m:&fm audx, =0, j=1,...,R (5.2)
where the coefficients a;, for k=0, 1,..., M are known and differentiable
functions of xy,..., X, 2. It is assumed that the R constraints are linearly
independent; that is, the rank of the matrix R x (M + 1) is R. Depending on
these constraints, the dynamic system is classified as follows:
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1. Catastatic or acatastatic. If all coefficients q,, for j =1, ..., R are zero,
the system is called catastatic. Otherwise, if at least one of the coefficients
ay, is not zero, it is called acatastatic.

2. Holonomic or nonholonomic. If all the Pfaffians of (5.2) are integrable and
hence reducible to perfect differentials df)(x,, ..., x4, 1) =0 for j =
1, ..., R, the system is called holonomic. Otherwise, if at least one of the
Pfaffians is not integrable, the system is called nonholonomic.

3. Scleronomic or rheonomic. If the system is holonomic and in addition

time ¢ does not appear explicitly in all the integrated forms f,(x,, . . ., x,),
the system is called scleronomic. Otherwise, if the system is holonomic and
time ¢ appears explicitly in at least one of the functions fi(x;, . . ., x,, 1),

the system is called rheonomic.

The M coordinates x, . . ., X, chosen here are not independent since they
are related by R constraints (5.2). The degree of freedomisn =M — R. In a
nonholonomic system, the excess coordinates cannot be eliminated by employ-
ing the constraints since all the Pfaffians are not integrable. In this case, it
becomes necessary to employ the number of coordinates that exceeds the degree
of freedom, but the number of excess coordinates must equal the number of
constraints that are retained.

Example 5.2

A bead is free to slide along a rod which rotates in the xy plane with a constant angular
velocity @, about the z axis, as shown in Fig. 5.3.

y

« Figure 5.3 Bead sliding on a rotating
0 rod.

It can be seen that if two coordinates x and y are employed to determine the
position of the bead, they are related by the angle & that the rod makes with the x
axis, so that
y—c¢

x

tan & =

Since @ = ¢, this constraint can be expressed as
(tanwg)x —y +¢c=0 (5.3)

This constraint is already in the integrated form f(x, y, t) = 0. The dynamic system
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is then holonomic and rheonomic. The two coordinates x and y are related by one
constraint (5.3), and the degree of freedom » = 1. Now, we can eliminate y by using
(5.3) and use x as the single generalized coordinate, or vice versa. It is of interest to
obtain the Pfaffian

a,dt +a;dx +a,dy =0 (54
which when integrated out yields (5.3). The Pfaffian is obtained easily by noting that

n\nww&erm&erI“&no

or
[(sec? w,t)w,x] dt + (tan w,)dx — dy =0 (5.5)

From (5.5) we note that since the coefficient of df is not zero, the system is acatastatic.
In order to be integrable to a perfect differential, the Pfaffian (5.5) has to satisfy the

integrability requirements that
9 (9ry_9d(df
mxﬁ?v T ot Amav
d
t

9 (9fy_9(df
5(5) =3 (55) -6
KA A@mv - @uAmhv
dx\dy dy\ox
It can be easily verified that these requirements are indeed satisfied by (5.5) and hence
it can be integrated to the form (5.3).

Example 5.3

We consider the two-dimensional motion of a boat in a plane. The roll, pitch, and
heave (up and down) motions of the boat are neglected. As shown in Fig. 5.4, we
choose x and y to represent the position of its mass center and the yaw angle ¥ to
represent its orientation with respect to the x axis. The constraint is that any transla-
tion of the center of mass of the boat must be in the direction of its heading. This
constraint can be expressed by the equation tan i = dy/dx. The Pfaffian is therefore
given by

(tany)dx —dy =0 5.7

Motion of a boat in the
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On comparing (5.7) with
df =a,dx + aydy + a,dy

where a; = tan ¥, a, = —1, and a, = 0, it can be verified that (5.7) does not satisfy
the integrability requirements and hence it cannot be integrated to the form f(x, y, ¥)
= 0. The system is catastatic and nonholonomic. The boat has only two degrees of
freedom since ¥ = tan™! (y/X), but it becomes necessary to employ one excess coor-
dinate along with the constraint (5.7).

Example 5.4

We consider a particle falling from the top of a spherical radome of radius ¢ as shown
in Fig. 5.5. The motion is in the plane. Choosing x and y as its position coordinates,
they are related by the inequality constraint x? + y2 — ¢2 > 0. This constraint is
expressed in the integrated form. However, because of the inequality, the system would
be considered as nonholonomic. The system can be made holonomic by describing its
motion separately in the two regions. In the first region, where the particle remains on
the surface of the sphere, the constraint is an equality and there is one degree of
freedom. A single coordinate, which may be x or y or the angle 8, may be chosen as
the generalized coordinate to describe the motion in this region. In the second region,
where the particle is no longer on the surface of the sphere, it has two degrees of
freedom and x and y may be chosen as generalized coordinates.

Figure 5.5 Particle falling from the top
of a sphere.

5.3 PRINCIPLE OF VIRTUAL WORK

The concept of virtual work is a very useful tool in the field of classical
mechanics. The principle of virtual work was first stated by Bernoulli for a
system in static equilibrium. This principle has been extended to dynamics by
employing d’Alembert’s principle. First, we consider the concept of virtual
displacements. Virtual displacements, which may not be true displacements, are
infinitesimal changes in coordinates, consistent with the constraints without
any change in time. We consider the configuration of the system at a certain
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time 7 and by freezing the time at that value give infinitesimal changes to the
coordinates without violating the constraints. Let M coordinates x,, x,, . . ., Xz
be chosen to represent the configuration of a system. Also, let there be R
constraints in the form of Pfaffians of (5.2):

M
a;, dt + \Mpm;&k» =0, j=1,...,R (5.2)

True displacements dx, have to satisfy (5.2). On the other hand, since the time
is frozen and dt = 0, the virtual displacements dx, satisfy

M
Daudn =0, j=1...,R (5.8)

The virtual displacements are denoted by dx, in order to distinguish them

from ﬁﬁiﬂmo@w@@&&xw- It should be noted that the virtual displacements

cannot violate the constraints (5.8). In case the system is catastatic [i.e., all

coefficients a;, IE\G.NV are zero], no distinction need be made between true
displacements and virtual displacements.

Example 5.5

We consider the bead that is free to slide along a rotating rod of Example 5.2. At a
certain time ¢, let the configuration be as shown in Fig. 5.3. Freezing the time to this
value, we give small virtual displacements dx and d y to the bead along the rod as shown
in Fig. 5.6(a). From (5.5), we see that the virtual displacements of Fig. 5.6(a) satisfy
the constraint

(tanw,t)dx —dy =0 (5.9)

y

dy

(a) (b)
Figure 5.6 (a) Virtual displacements; (b) true displacements.

Since the system is acatastatic, the true displacements satisfy the constraint

given by (5.5). Figure 5.6(b) shows the true displacements dx and dy. Here, since the

timie is not frozen, the angle & of the rod increases by @, At in time increment Ar and
the bead has true displacements dx and dy along the rod.
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5.3.1 Principle of Virtual Work in Statics

This principle was stated by Bernoulli for a system in static equilibrium,
First we consider a single particle whose position is 7 and which is subjected to a
resultant force F. If the particle is given a virtual displacement &7, after noting
that F' = O for static equilibrium, the virtual work is

OW=F-6r=0 (5.10)
moﬂ the resultant force vector F be decomposed into an impressed force vector
F* and a constraint force R so that F = F* + R. Substituting for the force in
(5.10), we obtain Qs e = ,(\.m.ww\zvv...,

OW=F*.-6r+R-6r=0 . (5.10a)
Since virtual displacements do not violate the constraints, the work done

by the constraint forces in virtual displacement is zero (i.e., R - 67 = 0). Hence,
from (5.10a), we obtain

SW=F*.6r=0 (5.11)
In Cartesian coordinates, this expression may be written as
OW =F*0x+Frdy +F*6z=0 (5.12)

If the particle is not constrained, then dx, dy, and dz are completely arbitrary.
It also follows that R = 0 and F' = F*. We can then choose 6y = dz = 0 and
6x #= 0 but arbitrary. It follows that F, = 0. Employing a similar argument, we
get
F,=F,=F, =0 (5.13)
When the motion of the particle is constrained, (5.12) still is valid but since
the displacements are no longer arbitrary, we cannot conclude that F¥, F}¥, and
F}* are each zero. For a system of N particles in static equilibrium, the equations
corresponding to (5.10) and (5.11), respectively, become

%x\” Nu.m.%%«.Ho AM.HAV
and
W =S E*.67,=0 (5.15)

Let M coordinates x,,..., X, subject to R number of constraints be
chosen to represent the configuration of a system of N particles in static equi-
librium. Let F¥, F¥, ..., F¥ be the components of the impressed forces along
the oo:omwonm_nm coordinates. The expression (5.15) for the virtual work then
becomes

SW — W F*6x,— 0 (5.16)

Since the coordinates are constrained, dx, are not completely arbitrary and
we cannot conclude that each F¥ is individually equal to zero.
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5.3.2 Extension of the Principle of Virtual Work
to Dynamics

The principle of virtual work can be extended to dynamics by employing
d’Alembert’s principle. Considering the ith particle from a system of N particles
and using Newton’s second law, we get

Fr+ R—Lmr) =0 (5.17)

The equation for virtual work in dynamics, analogous to (5.15) of statics,
then becomes

- N N N -
=3 [Pr—gomi)|- 67,0 (5.18)

In (5.17) and (5.18), it has been assumed that the position vector r is with
reference to an inertial system of coordinates; otherwise, it is necessary to
express the acceleration by oEEov\Em (2.65). The quantity —d/dt(m,r )is referred
to as inertia force and F'* — &\&RSK o) as the effective impressed force. In scle-
ronomic systems, we can choose 87, = dr, and the principle of virtual work
expressed by (5.18) reduces to the work—energy principle, and in conservative
systems it leads to the principle of conservation of mechanical energy. The
principle of virtual work will be employed in the next section to prove Hamilton’s
principle. As illustrated by the following example, it can also be employed in its
own right to obtain simple answers to simple problems without formulating the
equations of motion.

Example 5.6

A bead of mass m is free to slide in the gravity field on a circular hoop of radius ¢
rotating about a vertical axis at a constant angular velocity w, as shown in Fig. 5.7.
Determine all positions & at which the bead is in equilibrium.

This question can be answered after formulating the equations of motion as
shown later in this chapter. Here, it is resolved by employing the principle of virtual
work expressed _uw (5.18). Axes xyz form noninertial coordinate system with angular
velocity @ = @,/ . Its origin O is fixed in space. We choose two coordinates x and y
to represent the position of the bead on the rotating hoop. The two coordinates are
related by one holonomic constraint

x2 4+ y? =c? (5.19)
The position 7 of the bead is denoted by
r=xi +yJ (5.20)

The first objective is to determine the acceleration of the bead and then the inertia
force. From (2.65) the acceleration of the Goma is expressed by

al3+a+wexx+8x\+8x§xl

where the moom_mhm:on of the origin @, = 0. Also, F=r=w=0. Hence, a=
w X AS X 1) = —w?2x7 . The inertia force becomes mw2x7. The only impressed force
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Figure 5.7 Equilibrum position of bead on rotating hoop.

is due to gravity and it is —mg ', as shown in Fig. 5.7. The constraint force, which does
no work in a virtual displacement, is the reaction force between the bead and the
hoop. Now consider virtual displacements dx and dy. The virtual work of (5.18)
becomes
OW = (mw2x) dx — mgdy =0 (5.21)
Since the two coordinates are related by one constraint given by (5.19), it is not
possible to set §x = 0 and 8y -~ 0 but arbitrary and then conclude that the individual
coefficients of dx and Jy are each zero. The bead has only one degree of freedom and
we choose @ as the generalized coordinate. Now, x = ccos @, y = csin, 0x =
—csin 80, and 8y = ¢ cos 8 66. Substituting this result in (5.21), we obtain

OW = —[mw?2c? cos 8 sin @ + mge cos 8] 60 = O

Now 80 is arbitrary and setting its coefficient to zero in the foregoing equation, it
follows that
cos Olmw?2c? sin @ + mge] =0 (5.22)

The solutions of (5.22) are given by
cosf =0;  thatis,§ =nZ, n=13,5,...

sin@ = In%waw that is, 8, = —sin~!
orf, =0, — n2.

It should be realized that some of these equilibriums may be unstable. The inves-
tigation of stability is discussed in Chapter 9.

%a+n§, n=0,1,2,...
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5.4 HAMILTON'S PRINCIPLE

Hamilton’s principle is one of the best known variational principles of mechanics.
It is an integral principle and considers the configuration of a system between the
time interval (¢, ¢,). Using Hamilton’s principle, the problems of dynamics are
reduced to the evaluation of a scalar definite integral. The formulation has an
advantage as it does not depend on the coordinate system used to express the
integrand.

We consider a system of N particles. Using d’Alembert’s principle and
the principle of virtual work, it is seen from (5.18) that

N

)y Tm.* — %Asg 281, =0 (5.23)

i=1
In the foregoing equation, F* is the impressed force acting on the ith
particle. The constraint forces are not included since the virtual displacements
87, are compatible with the system constraints and the virtual work done by the
constraint forces is zero. The second term in (5.23) may be written as
N & N . N & kN N N EN N
S (mr) e 0r, =3, Z(myr, - 8r))— > myr, » dr, (5.24)
“ide “lar =
In the second term on the right-hand side of the foregoing equation, we
have written &\&QNV as r, by interchanging the operations d/d¢ and 8. This
term can be transformed using the kinetic energy T of the system. We have

N kN kN
HHW.M“_SN.?.?
=

The variation of T can be written as

oT = M SNWN ° %\.. AmNmV
=1
Hence, (5.24) becomes
S} S (mr) - 67, = 3 L, - 67) — oT 5.26
N.HMUH &|NA§N.~.~.V s 0r; — ..M &|~A§..~... . \._.v _ A . v

Denoting the work done by the impressed forces as

S — S X . 87, (5.27)

i=1

and employing (5.26) and (5.27) in (5.23), we obtain

- N kN o
SW* 1L 6T =13 %c;: . 67D (5.28)
i=1
On integrating (5.28) with respect to time over the interval from ¢, to ¢,
it follows that

(5.29)

i=1

% (OW* + 6Ty dt — ﬁM mer, - %@

1
to
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The system configuration changes with time, tracing a zrue path. A slightly
different path known as varied path is obtained on giving virtual displacements
87, without involving change in time (i.e., 6z = 0). The varied path, however,
coincides with the true path at the two end points ¢, and 7, as shown in Fig.
5.8. Under these conditions, it follows that

8ri(ty) = 6r,(t,) =0

X;

! VARIED PATH
x}_vﬁ ||||||||||||||||||||||||||||||||||
“—— TRUE PATH
! !
| m
. m m
1 I 1
m h m
to t t t
Figure 5.8 True and varied paths.
Now, (5.29) may be stated as
4] -
% (W* 1 8T)dt =0 (5.30)
to

Equation (5.30) represents Hamilton’s principle in its most general form.
It states that the true path followed by the dynamic system to go from onv at
time 7, to MQL at time ¢, is such that the time integral of the sum of the virtual
kinetic energy change and virtual work vanishes when subjected to virtual
displacements from the true path. This general principle is applicable to non-
holonomic and nonconservative systems. In case all the impressed forces are
conservative, the virtual work of (5.27) is related to the change in potential energy
U by W = —3U. Defining a scalar function L called the Lagrangian as

L=T—U (5.31)
a special case of (5.30) can be expressed as
ﬁ_ SLdt — 0 (5.32)

Furthermore, if the system is holonomic, then (5.32) becomes
oI=24 % Ldt—0 (5.33)

Equation (5.33) states that the true path followed by a conservative,
holonomic system to go from r(z,) at time ¢, to r(z,) at time #, is such that the
time integral

= %_h& (5.34)
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is extremized. Of course, it should be noted that the most general form of
Hamilton’s principle is expressed by (5.30). This principle will be employed in
the next section to obtain the Lagrange equations of motion.

5.5 LAGRANGE EQUATIONS OF MOTION

We now derive Lagrange equations of motion using the following two
approaches: (1) the application of d’Alembert’s principle, and (2) application of
Hamilton’s principle. First, we treat only holonomic systems and later generalize
the results to nonholonomic systems.

5.5.1 Application of d’Alembert’s Principle to Holonomic
Systems

We consider a dynamic system of N particles. Using d’Alembert’s principle
and the principle of virtual work, it is seen from (5.23) that

N N N N

S| Fr—Smry]- o7, =0 (5.35)

i1
where F ¥ is the impressed force on ith particle of mass m,. Let the system have n
degrees of freedom. Choosing g, ..., g, as n generalized coordinates for this
holonomic system, we have the transformation equation

N

re=rdqus s qut) (5.36)
between the vector coordinates of the particles and the n generalized coordinates.
Rigid bodies will be considered later by including angular coordinates among
the generalized coordinates. The velocities of the particles are then

5 & 9, dq. | Or;
:\\M&»wwa&

and since the variation in time ¢t is not considered, the virtual displacements are

(5.37)

%ﬂ_. = MJ v%b 0qy

Considering the first term in (5.35), the virtual work of the impressed
forces F }, both externally applied and internal, becomes

MZUW.%.%NHW MWW.%‘?%Q»HMQ»%Q» (5.38)
i=1 i=1 k-1 dx k-1
where
k e B %Q» )

is called the generalized force in the direction of the kth generalized coordinate.
The second term in (5.35) involving the accelerations becomes
= 97,

m LN %Ir N n -
mr; e L= P .
O =y 2 T G

84, (5.40)
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where we can then write

yoo=m 0dr,

) N - %.w._ﬂ s d F
W“ mr, 3. = M A&N ASNS mm»v mr o Am@«v* (5.41)

The last term in the foregoing equation becomes

d . 9%,
dt Amfv M 1 0q, QQ\S + dq, 9t
9 (dry .w?.
) -5 s
It can also be shown from the expression for 7 that
or, _ a7,
dg. — dg, (343)

Employing (5.42) and (5.43) in (5.41) and then substituting the result in (5.40),
it is seen that the virtual work of the inertia terms can be represented as

IW“ S_..w_. < Or, = IM M ﬁ ASNN . W?v — S«..N . %3“ 0q.

=1 =1 k=1 qx 09,
Sl ) A
-5 (G gt G4

Substituting in (5.35) the expressions for the virtual work done by the
impressed forces and inertia forces from (5.38) and (5.44), respectively, we

obtain
2 d/aT oT
Ll (7.) - 94, 0] 69, = (5.45)
For a holonomic system, g, ..., g, are independent. Therefore, we can

let all dq’s except one be zero. Then the coefficient of that nonzero dg must be
zero. Employing this mamEzm:r we obtain

d (0T .
S\ = =12,... 5.46
20N -0 itz (5.46)

These n equations are known as Lagrange equations of motion. They
consist of n second-order differential equations which in general are nonlinear
but may be linear in some cases.

5.5.2 Application of Hamilton’s Principle to Holonomic
Systems

We have seen that the general form of Hamilton’s principle is expressed by
(5.30), namely

[ @W -+ 6Tyar =0
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where the end points are fixed, that is, 67 (to) = 87 «t;) = 0. For a holonomic
system of N particles with n degrees of freedom, we choose ¢y, ¢,,. .., g, as the
generalized coordinates. The transformation equations between the vector
coordinates are given by (5.36). The total kinetic energy of the system is

=y

\MMUS L (5.47)

Substituting for the velocities of the particles from (5.37), we obtain

P LS ) (5 %)

1 & (& e 0 0, . dr; . & dri, . dr, 9,
- MFMU_ SNATM_ = Q\ %Qw%.\.@« |T N %N .\M %Q.\‘Q\ |T %N %Nv Am&wV
We now introduce the following coefficients as
_ & dr, 9,
R.\.wllh.uM_S..%Q.\. %Qk
N %L.
B=3m . (5.49)
= N q;
_ L& a9, dr,
eI A
Then (5.48) can be written in the form
T=T,+T, + T, (5.50)
where
M M 04 19k
is a quadratic function in the generalized velocities,
= 2. B
j=1
is a linear function in the generalized velocities, and
T, = ?

is a nonnegative function of only the generalized coordinates and time but is
not a function of generalized velocities. It should be noted that «,,, #,, and y
are in general functions of generalized coordinates and time. Thus, using
generalized coordinates, the expression for the kinetic energy takes the form

N;”NJAQ:QNv...vQEQ.:Q.Nw...uQ.ENv AMMMV
We have scen earlier that the expression for the virtual work done by the
impressed forces is given by (5.38) as

W =3 0,84, (5.52)

i=1
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Our concern now is to determine those ¢, which satisfy the equation
ﬁ Qﬂ+ 3o &vsuo (5.53)
Taking the variation of T employing (5.51) and noting that ¢ = 0, we
get
(5.54)

o7 =% L 60+ 59

i=1

Substituting this result in (5.53), we obtain

%MFQ ~0.) %4+ Mw 8 [ dr =0 (5.55)

i=1

Integrating the last term in the foregoing equation by parts, we get

h M a4, g 00t = ﬁ‘M_ g, 8_ % i dt %_v 0q: dt

— |% > o §_v g, di (5.56)
The foregoing equation follows from the fact that dg(r,) = 8g.(¢;) = 0
for i = 1, ..., n. Substituting for the last term in (5.55) from (5.56), we finally
obtain
e d (9T _
b 3 TQINAMMV %. &3 dt =0 (5.57)

Since for an holonomic system the generalized coordinates are indepen-
dent, the coefficient of each dq, in (5.57) must be zero. Thus, it follows that

&mﬂ mﬂ\ .\
mﬁmi&v\ﬁl _._ NI_VN,....: (5.58)

It is seen that these Lagrange equations of motion are identical to those
given by (5.46).

Example 5.7
Two masses m; and m, are connected as shown in Fig. 5.9. Mass m, is attached to a
rigid massless link OA of length a which is free to rotate at bearing O. Mass m, is
attached to a rigid massless link 4B of length b which is free to rotate at bearing A4.
The motion is constrained to the vertical plane. The bearings are assumed frictionless
and mass m; is acted on by a force P in the horizontal direction and a force Q in the
vertical direction as shown. Obtain the Lagrange equations of motion.

Choosing a Cartesian coordinate system Oxy to represent the motion, the posi-
tion coordinates of the mass particles are given by

N

rio=x10 + 37
wn = Nnm., +.<~\|.,
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mg

Figure 5.9 Motion of masses m; and
ma. m.g

Here, there are four coordinates x;, x,, y;, and y, which are related by the
holonomic constraints

xt+yt=a?
(x2 = x1)* + (y2 —y1)? = b?

Hence, this system has only two degrees of freedom. We choose angles #, and
@, as the two generalized coordinates. The transformation equations (5.36) become

F. =asin@,7 +acosf,j (5.59)
Fa = (asin@, + bsin@y)i + (acos @, + bcos,)j (5.60)
The total kinetic energy is given by
2 o a
T=423 mr;-r,
i=1
=dmxt + mipt 4+ Impxi 4 dmyyi (5.61)

The velocities 7 1 and wn are obtained from (5.37). It is easier here to express the
kinetic energy in terms of the generalized coordinates by making the following sub-
stitutions directly in (5.61):

%, = a(cos 0.8,

—a(sin 8,)6,

;i (a cos 6,)8, + b(cos 0,)0,
—a(sin )8, — b(sin 8,)0,

Hence, in terms of the generalized coordinates, the expression for the kinetic
energy becomes

T= NSENQ.W cos2 @, + w::anm.m sin2 6,
+ wi»@m_ cos @, + b0, cos 0,)2 + WSNAQQ._ sin @, + b0, sin 6,)2 (5.62)

It is noted here that for this expression, we have T = T,; that is, T is a quadratic func-
tion of the generalized velocities 9 and mn and T, and T, are both zero. The generalized
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forces are obtained from expression (5.39), which becomes
97, 97,

a6, 06,’
where F; and £, are the impressed forces on masses m, and m,, respectively. These
are given by

+ F, -

QNHW»

i=1,2 (5.63)

mw =P7 + (m, g — Qv\L (5.64)
Fy = mygj (5.65)

There also exist constraint forces which consist of forces in the links and the reactions
at the bearings. But since the constraints are not violated, the constraint forces do no
work in virtual displacements and are ignored. From (5.59) and (5.60), we obtain

W% Hmwﬂanomm_w —asinf,j

1 1

M% =0 and WWN =bcos@,/ — bsinf,]
2 2

Employing these results and those of (5.64) and (5.65) in (5.63), the generalized
forces in the §, and @, directions are given, respectively, by
Q= (Q —~mg — mygasinf, 4 Pacos b, (5.66)
and
Q, = —myghsinf, (5.67)

The Lagrange equations of motion are obtained by substituting from (5.62),
(5.66), and (5.67) in (5.58). These are given by

AR

or

MMIW,_HS» + Swvhnmn + §NQWQ.N Cos A%~ - %NM_ + §NQ®Q.»®.N sin A%u - an
=(Q — mig —mygasin@, + Pacosb, (5.68)

%HSN%P cos (@1 — 0) + myb*0;] — myabf,6, sin 0, ~ 6,)
= —m,gbsinf, (5.69)

Equations (5.68) and (5.69) are the two equations of motion. It is seen that each
equation is nonlinear and of second order.

Example 5.8
We wish to obtain the Lagrange equations of motion for the bead of Example 5.6
shown in Fig. 5.7. We employ the rotating coordinate system Oxyz of Fig. 5.7 with
angular velocity @ = @, . The position vector r of the bead is denoted by

r=xi +yj (5.70)
The two coordinates x and y are related by one holonomic constraint,

x2 4 y2 =¢? 7D
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The velocity of the bead with respect to this coordinate system becomes
v=r+oxr

=%+ 3] o] % (xi +y])

=% +p] — woxk
The kinetic energy is given by

T=4mo « v = im(x> + 32 + @§x?) (5.72)

The bead has only one degree of freedom since x and y are related by constraint given
by (5.71). Choosing 8 as the single generalized coordinate, the transformation equa-
tions (5.36) become

=ccos@
y =csinf
and hence % — —c0 sin @ and 3 — ¢ cos 0. The expression for the kinetic energy in
terms of @ is obtained by employing this result in (5.72). We obtain
T = imc2(0? + wf cos? 0) (5.73)

It is noted that for this expression we have 7 = T, + 7, and T; = 0. The generalized
force is obtained from the expression
. dr
= F« == 5.74
0=F-% (5.74)

where F is the impressed force on the bead. If friction is neglected, the only impressed
force is due to gravity and we get

F=—mgj
Also,
Ww = —csin@7 + ccosOf (5.75)
Hence, the generalized force becomes Q = —rige cos 0. The Lagrange equation
of motion is obtained from .
d Ty _ 0T _
dt A%v 96
or
MWASQNQ.V — mc2w} cos @(—sin @) = —mgc cos O

Hence, the equation of motion becomes

g + w} oommmmuwgw\whoommﬂo (5.76)

Now if 8 is constant, then § = 0 and the equilibrium is described by
w} cosPsinf + W cosf =0 (5.77)

It is seen that (5.77) is identical to (5.22), which was obtained by the direct
application of the principle of virtual work without formulating the differential equa-
tion of motion.
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It should be noted that the constraint force which consists of the reaction
between the bead and the hoop was ignored in the formulation of the equation of motion.
Hence, the value of the reaction is unknown. Sometimes, some impressed forces such
as frictional forces depend on the constraint forces. Then it becomes necessary to
obtain explicit expressions for the constraint forces by direct application of Newton’s
law. To illustrate this point, we now include Coulomb friction opposing the sliding of
the bead on the hoop. Letting N denote the reaction on the bead, we now have an
additional impressed force — N sgn 8 acting on the bead in the @ direction. A free-
body diagram of the bead is shown in Fig. 5.10.

- HN
-~ Am mg

The acceleration of the bead is given by

Figure 5.10 Free-body diagram of bead.

Aa=r+20X7r +oX7r+odxX@X7r)
where MLH xXi +ww, 20 X 1 = Imeoxmv WX 7= 0, and @ X Amv X 1)
= —w3ixi. Hence, we get
a = (—cfhsin @ — B2 cos @ — mw?c cos $|N.,
+ (cb cos 8 — c6? sin 0)] + 2wl sin Ok
The component of N in the radial direction is obtained from the first two
terms in the preceding equation as

N, — mgsin @ — mw?c cos? § — mch?
The component of N in the z direction is given by
N, = 2maw,cf sin 6
Hence, the total normal force on the bead is obtained as
N = [(mg sin @ — mw?c cos? @ — mch?)? -+ (2mw,ch sin 6)2]1/2 (5.78)
The additional impressed force in the @ direction due to Coulomb friction
becomes
F, = —uNsgnf
The total impressed force on the bead is due to the gravity force IE%M
and the friction force F;. The generalized force in the 8 direction is obtained as
Q = —mgccos @ — uNsgn @
Substituting these results in the Lagrange equation, the equation of motion
becomes

m+t2wmsmLﬂewoommmm:mLﬂWSmmHo (5.79)

mc?

where the normal force N is given by (5.78)
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5.5.3 Lagrange Equations of Motion for
Nonholonomic Systems

The foregoing development of the Lagrange equations of motion can be
easily extended to nonholonomic systems. Let n coordinatesqy, . . . , ¢, be chosen
to describe the motion, and these coordinates are related by R nonholonomic
constraints of the form

a,, dt + M_a;&?no. j=1,...,R (5.80)

where a;, (k =0, 1,...,n) are functions of g,. The degrees of freedom now
are given by n — R, and the coordinates g, are not all independent. Hence, the
argument employed to set the coefficient of each dg, in (5.45) or (5.57) to zero
becomes invalid. The virtual displacements are related by the equations

$a,dq, =0, j=1,...,R (5.81)
k=1

Here, we employ the method of Lagrange multipliers. Multiplying each of
the R equations of (5.81) by an as yet unknown Lagrange multiplier A, we add
the sum to the left-hand side of either (5.45) or (5.57). Now, (5.57) is modified to

% S~ d () + G 0 3 Ajau | S =0

0 i=1

This modification is permissible since the right-hand side of each of the R
equations of (5.81) is zero. We now choose the Lagrange multipliers 4, (j = 1,
..., R) such that the coefficients of dq; for i=1,..., R are equal to zero.
The remaining (n — R) dq, are independent and can be chosen arbitrarily.
Hence, we obtain the Lagrange equations of motion

R
M@\@lmwn B A i=12.n (5.82)
The n Lagrange equations of motion (5.82) together with the R constraint
equations (5.80) together constitute (n + R) equations in (n + R) unknowns,
namely, the n coordinates g; and the R Lagrange multipliers A,. It is noted from
(5.82) that the term qu A,a,; is equivalent to an additional generalized force in

.\"H . .
the direction of the ith coordinate contributed by the constraint force. This

procedure permits the solution of not only the coordinates g; but also the con-
straint forces associated with each of the R constraints (5.80). The method,
however, does not include nonholonomic systems where the constraints are
expressed in the form of inequalities as in Example 5.4. As pointed out in that
example, such systems can be treated as piecewise holonomic in the different
regions,

Example 5.9

Two masses m; and m, are constrained to move in the xy plane as shown in Fig. 5.11.
It is assumed that the pulleys are massless and frictionless and that the rope is inexten-
sible. Let x denote the displacement of mass m; from its position where the spring is
unstretched, and y the displacement of mass m, from its corresponding position.
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COULOMB FRICTION

ma

¥ F(n y
Figure 5.11 Two masses constrained to move in a plane.

Choosing x and y as the two coordinates to describe the motion, we find that
they are related by one holonomic constraint x — 2y = 0. Hence, it is possible to
eliminate one excess coordinate and employ either x or y as the generalized coordinate
for this single-degree-of-freedom system. However, we treat the system as nonholo-
nomic for the purpose of determining the constraint force, which in this case is the
tension in the rope. The expression for the kinetic energy becomes

T= .MSTNN -+ SNV.\N Am.mwv

The spring force and Coulomb friction constitute the impressed forces on mass
m, and the applied force F and weight m,g are the impressed forces on mass m,.
Hence, from (5.39), the generalized forces in the directions of the x and y coordinates
are given, respectively, by

Q. = —kx — um;gsgnx (5.84)
and

Q,—mg+ F (5.85)
The Pfaffian corresponding to the constraint is given by a, dx + g, dy = 0,
where @; = 1 and a, = —2. Choosing one Lagrange multiplier A, the Ag; in the direc-

tion of the x and y coordinates becomes
»k: = »\ Ammmv
Aay, = =24 (5.87)

Substitution from (5.83) to (5.87) in (5.82) yields the two Lagrange equations of
motion. These equations and the constraint equation become

m% = —kx — pmygsgnx + A
m.y = mg + F— 24
% =2y

(5.88)
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Equations (5.88) are the three equations in the three unknowns, x, y, and A. It
is seen that Aa; and Aa, are the effective constraint force components in the x and y
directions, respectively, which would do work if the constraint was relaxed. Obviously,
A here is the value of the tension in the rope.

5.5.4 Alternative Forms of the Lagrange Equations of
Motion

Let the impressed force acting on jth particle of a system of N particles
be separated into conservative and =o=oonmoﬂ<m:<o forces as

F¥=F* 4+ Fx | )
Equation (5.38) for the virtual work done by all the :E:mmmoa moﬂoom may
now be expressed as S
S
N a0 - n .
* =
.\HM Nﬂ.\ %\.\ M %Qu %QN IT M Q:o : 04; ! AMW@V )
€ «

where U is a scalar potential energy which is a function of position only @ﬁwn@mmom
in terms of the generalized coordinates [i.e., U = U(gqy, . . ., gq,)] and

pe L OF

=2 Fr, - 5

:a M L %Qu

j=1

which is the generalized force in the ith coordinate direction contributed by the
nonconservative impressed forces only. For a holonomic system, the Lagrange
equations of motion may now be written as
d (9T aT U
a57) g~ —5q O
A scalar Lagrangian function L is defined as stated in (5.31) by L =
T — U. Since U is not a function of ¢,, we have

or _aL
%Q.«. ﬁw@m
Substituting this result in (5.90), the Lagrange equations of motion for a
holonomic system when expressed by a Lagrangian become

itlg) — g, =

and for a nonholonomic system, we obtain

(5.90)

i=1,...,n (5.91)

d(dL L R
&INA%]SV — Mwm = Qi + .TMW »da.: Am.wmv
For a conservative holonomic system, it follows from (5.91) that
d (dL JL .
MA%MVIQI&\ ., i=1,...,n (5.93)

Sometimes, the frictional forces acting on a particle are separated into
viscous and nonviscous friction forces. Viscous friction forces are proportional
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to the velocity of a given particle and resist the motion, since they act in a
direction opposite to that of the velocity. Nonviscous friction forces are non-
linear functions of the velocity and resist the motion. For the viscous friction
forces, we define a scalar function F, known as Rayleigh’s dissipation function,
which is a quadratic function of the generalized velocities as

=3 M M ¢ 9.4, (5.94)

=1 J=1
Then the virtual work done by viscous friction forces becomes
%vﬂ\e”MQeL%SH Mm oq,
i=1 =1 9
that is, the viscous friction generalized force in the direction of the ith coordinate

becomes
JF

0.~ —5¢ (5.95)
Hence, the Lagrange equations of motion (5.91) for a holonomic system
with viscous friction may be expressed as
d Am|hv dL . dF _
dr\dq,)  dq; ' dq, <"
where the generalized force Q,, , now does not include the contribution of the
viscous friction forces.

Example 5.10

Derive the equations of motion governing the free vibrations of the system shown in
Fig. 5.12. Assume the springs and the rigid bar to be massless.

i=1,...,n (5.96)

nc,.
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Figure 5.12 Free vibrations of a system of two particles.
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We select ¢, and g, as the generalized displacements for the masses [Fig. 5.12(b)].
The system has two degrees of freedom. The kinetic energy of the system is expressed

by
= 32mgt + mg3)

and the potential energy U of the system is

k 2k

U= 5 + 5 (g, — 241
The Lagrangian becomes
k
5 @mit - mg3) — Iﬁ - las — 29,

and for this holonomic conservative system with two degrees of freedom, the Lagrange

equations (5.93) become
4Ly 9L
dt ma._ mn 1

ifl3ie) ~oa: =

Now,
d{0L . dL
—| == = 2mij,, S— = kqy — 4k(3q; — 2q9,) = %%q, — 12k
&Amﬂv mi g, (392 — 294) 91 g2
d(dL . dL
252 = , = 6k(3q, — 2
Qﬂ A%QNV mq, %QN A qd2 Qﬂv
Substituting these results in the Lagrange equations of motion, we obtain
2mg, + 9%q, — 12kq, =0 (5.97a)

For this linear system, we define mass and stiffness matrices as

2m 0 9 —12
[M] = ; (K] =k ;

0 m —12 18
and in the matrix notation, (5.97a) and (5.97b) can be expressed as
(M] 3 + il =0 (5.98)
dz
Example 5.11

A spring pendulum as shown in Fig. 5.13 has a mass m suspended by an elastic spring
of stiffness k and free length a. Derive the equations of motion of the pendulum.
Assume viscous frictional moment at the pivot resisting the motion in this vertical
plane.

The system has two degrees of freedom. We select r and @ as the generalized
displacements in the polar coordinate system. The generalized velocities of the mass
are given by r and r. Hence, the kinetic energy T of the system becomes

= Im(r6)? + smi?
The potential energy of the spring and mass is given by
= $k(r — a)?2 + (¢, — rcos Bymg
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mg Cos6
mg

gSing Figure 5.13 Spring pendulum.

where ¢, is a constant and the Lagrangian function becomes

L = im(r0)* + imi* — Lk(r — a)* — (c; — r cos O)mg (5.99)
The Rayleigh’s dissipation function is
= w«.mn
and the Lagrange equations of motion (5.96) become
d(dL 0. | 0F
lAuwv ~% 55 =0 (5.100)
d/oL oL  OF _
— — + = 5.101
dt A%V 90 " 96 G100
Now,
WNAM%V = m¥, www = mr@? — k(r — a) + mgcos
%‘Amv = mr2f + 2mrib, WW = —mgrsin§
OF o,  9F_ 4
oF %%

Substituting this result in (5.100) and (5.101), the resulting equations of motion
are given by
mi — mrf? + k(r —a) —mgcosf =0 (5.102)

mr2 4 2mri@ + mgrsinf + 0 =0 (5.103)

Example 5.12

Figure 5.14 represents a mass m which is suspended by an inextensible weightless
string of length R. The string constrains the mass to a spherical surface with center O
and radius R. The position of the mass m is completely defined by spherical coor-
dinates, 8 and ¢. Determine the equations of motion of the mass.

Sec. 5.5 Lagrange Equations of Motion

Figure 5.14 Spherical pendulum,

The generalized coordinates of the pendulum are (8, ¢). The kinetic and poten-
tial energies are given by (Note that x = Rsinf cos @, y = Rsin 8 sin ¢, and

z=Rcos )

2
= 7R @2 1 gosim2 0 - LmG2 4 52 4 22)
U= mgRcos8 (Vla2hn = 0 is taken as datum)

The Lagrangian becomes

L= SxN%N + ﬁN sin2 @) — mgR cos 0

and differentiation yields

Ww = mL20, w% — mR2$? sin @ cos § + mgR sin §
MM = mR2$ sin2 6, %ﬁ =0

For this two-degree-of-freedom conservative systems, the equations of motion

are obtained from (5.93) as
dyory _ oL _
&A%V 70

d/oLy _IL _
dt Agv ¢
Substitution of these results in the foregoing equations yields the equation of

motion as
RG — Rp2sin 6 cos § — mgsind =0 (5.104)

$sinf - 20 cos§ =0 (5.105)
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5.5.5 State-Space Formulation of the Lagrange Equations
of Motion

For a holonomic system with n degrees of freedom, the Lagrange equations
of motion consist of a set of » simultaneous second-order differential equations
which are generally nonlinear in the generalized coordinates and velocities. We
may associate with these n generalized coordinates an n-dimensional Euclidean
space which is called the Lagrangian configuration space, where the solution of
the dynamic system may be represented. However, for the geometrical repre-
sentation of the dynamic system and for the application of the analytical tools
which are discussed in later chapters, it is convenient to formulate the problem
as a set of 2n first-order equations in 2n-dimensional Euclidean space called the
state space. For this purpose, we define a 2n state-variable vector {x} consisting
of n generalized coordinates and n generalized velocities as

X1 R
X2 q:
: {q}
Xn =(d.} =3 - (5.106)
Xn+1 d M&
.Xna Q.:

Since the Lagrange equations of motion are of second order, the accelera-
tions appear at most to the first order. Hence, these equations may be written in
the form

_”Eum&w - MWAQ: e ey QE Q.: L] Q.E Q: Tee Qav va Ammo‘d

where [M] is a n X n matrix whose elements are functions of ¢,, ¢,, and time ¢
and {g} is a n-dimensional vector function of g,, §;, ¢, and generalized forces Q,.
Because a general expression for the kinetic energy is as given by (5.50), [M] in
(5.107) is a positive-definite matrix and hence has an inverse. Inverting this
matrix, we get

.\‘=+HAQ: s Gn Q.T Te Q.an:. .. vmau Nv
{g1=IMI"gt=4 - (5.108)

.\N:AQ:...uQE%:...vQ.auQ:...uQENv

The state equations in the generalized coordinates and generalized veloc-
ities of (5.106) are expressed as

m.&w“m.\.@n:...u.&n:v Q:...vwa. va AMHOWV

i
1
k
%
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where fi = X1, f2 = X,44,--.,f, = X,, and the functions f,,,,..., f;, are
given by (5.108), where the state variables x; have been substituted for ¢, and ¢,.
In (5.109), the first n equations are purely kinematic and obtained from the
definition of (5.106) as x; = x,,, for i = 1, ..., n. The remaining # equations
are obtained from the Lagrange equations of motion as seen from (5.108).
Example 5.13

We consider the dynamic system of Example 5.11. The Lagrange equations of motion

for this system are given by (5.102) and (5.103). In order to obtain the state variable
formulation, we write these equations as

ﬁs 0 ﬁm*iﬁ»¢|3+§w8&+§?
0 mr2 |8 —2mri@ — mgrsin @ — ¢ W
Hence, we obtain

MJ| so Q-_*|»A‘|s+§8%+§?w
p

0 mre? —2mri — mgrsin @ — 0
IWC. —a) +gcos@ + rf2

IN@ — & .sinf — %Nm
r r mr

(5.110)

Choosing the generalized coordinates and generalized velocities as state vari-
ables, we define .

Xy =1, x, =0, X3 =F, x, =0

Hence, we obtain the state equations as

Xy = X3
Xy = X4
. k k
X3 = ——x; +gcosx, + x1xX5 +—a (.11
m m
. X3Xa sin X2 4
Xy = —2 — — —X
4 X1 &% mxi 4

It is noted that the first two of the foregoing equations are kinematic and are
obtained from the definition of state variables. The last two equations are obtained
from the Lagrange equations of motion after solving for the acceleration vector as in
(5.110). Equations (5.111) are expressed in the form

(£} = {f(x1, X2, X3, x4)} (5.112)

5.6 HAMILTON’S CANONIC EQUATIONS OF MOTION

In the preceding section, the Lagrange equations of motion have been expressed
as a set of 2»n first-order equations by choosing generalized coordinates and
generalized velocities as the state variables. Of course, this choice of state
variables is not unique. Another choice is to select generalized coordinates and
generalized momenta as the state variables as shown in the following. For a



. — e e awuinional variables called generalized momenta as

0T oL .
P!m[&im[&, i=12,...,n (5.113)
A scalar Hamiltonian function H is defined by
H = M g — L (5.114)
The variation in the Hamiltonian is then given by
e . . 0L .
0H = NLH _H%»PS + p: 64, 94, 0q, ml$ %Q@
and after noting that p, dg, — (dL/d4,) ¢, = 0 from (5.113), we obtain
SH =3 | 8pids — Wmm& (5.115)
i=1 q;

We now solve for the generalized velocities ¢, in terms of the generalized
momenta p, from (5.113) and substitute the result in (5.114) such that the
Hamiltonian becomes

ml,!lEAQ:QNu...uaw:qh:‘ﬁpu...uﬁaﬂv AM.MMQV
Employing (5.116), the variation in the Hamiltonian can be expressed also

as
6H — M TP Op; - ml m& (5.117)
On comparing (5.115) and (5.117), we note that
g WM (5.1182)
tmw - W.M (5.118b)
From the defining equation (5.113), we get
e = mm@.wv (5.119)

and after noting that for a holonomic system from (5.91) we have
d (L JL
wﬂAml&v 3a + Ohe.

it follows that

. JL
h« - %Q~ JF m‘.n.
After employing (5.118b) in the foregoing equation, the result becomes
p=—3210., (5.120)

QQ«

Equations (5.118a) and (5.120) now constitute a set of 2n first-order
equations
;= 9H
4 ap,

. oH ,
= + 0, i=1,...,n
b mm« O,

These equations are known as Hamilton’s canonic equations of motion.
It is noted that the first half of the foregoing equations is a result of the definition
of the Hamiltonian and the second half reflects the Lagrange equations of
motion. For a nonholonomic system, it follows from (5.82) that

(5.121)

d (dL\ dL R
&I«A%I@v = WMM 4 Qet + .‘MHU_ N.‘Q.:
Substituting this result in (5.119), the Hamilton’s canonic equations of
motion for a nonholonomic system are expressed as

4ot
! ap;

\m« MI‘!TQ:....LITM.».D: mnﬂva...uR

(5.122)

Equations (5.121) or (5.122) have been expressed as a set of 2» first-order
equations

M‘&W ”M\.Axuu...uanu mnu. trs Q\-vaw

where the state-variable vector is defined by

{q}
= -
{r}
We note that the Lagrangian function has been defined by
L=T-U

Hﬂp+ﬁ_+ﬂc|~\

where we have employed (5.50) for the general expression for the kinetic energy.
Hence, it follows that
aL .

.ml&ﬁ
Substituting this result in (5.114), we obtain
H=2T,+ T, —L
=2+ T ~T,—-T, —Ty+- U
=T, —T, + U

=2T, + T,
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Now, if T, = T, = 0 such that T = T,, we have
H=T+4+ U=F
that is, under these restricted conditions, the Hamiltonian can be defined as the
total mechanical energy.
Example 5.14
We consider again the dynamic system of Example 5.11. In Example 5.13 we have
obtained the state equations for this system by employing the generalized coordinates
and generalized velocities as state variables. In this example, we obtain the Hamilton’s
canonic equations, that is, the state equations by employing the generalized coor-
dinates and generalized momenta as the state variables. We note from (5.99) that the
Lagrangian has been obtained as
L= wil? + imf? — Jk(r — a)> — (¢y — rcos Oymg

We define two generalized momenta coordinates as

_oL _
ﬁal%mlwwﬁ.
Fﬂwmﬂswpm

The Hamiltonian function becomes
H=pi+pf —L
=piF + hpm. — wswpmp — dmF? + Jk(r — a)? + (¢; — rcos 6)ymg (5.123)

Solving for 7 and 6 in terms of p1 and p, from the foregoing equations, we obtain

F=_—
55

. H
O = et

Substituting this result in (5.123), the Hamiltonian is expressed as a function of
r, 8, p1, and p,. After simplification, we obtain

11 11 1
H==—pl + 5 50k + 5 kr — a)* + (e — r cos Oymg

Since in this example, T; = T, = 0 and T = T, it follows that here the Hamil-
tonian is the total mechanical energy. Now, the Hamilton’s equations (5.121) become

joOH _ 1
%ﬁ» m !
s 0H 1
0= QMN B §1NMN
b= 0= Lot~k — @) + mecost
Py = IW|M~+ Q.o = —mgrsinf — %E
where Que,, = 0 and Que,o = —cf = —(c/mr?)p,.
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Choosing state variables as x; = r, x, = 8, x3 = p;, and x4 = p,, the state
equations may also be written as

X = Fk

1 mX3
X S X

2= e

1 (5.124)

%y =——x% — k(x; —

e L (x1 — a) + mgcos x;

. . c
X4 = —MEX1 SIN X3 — ——5 X4

mx?

On comparing (5.111) and (5.124), it is seen that these two sets of equations are
quite different from each other even though they describe the equations of motion of
the same dynamic system. Only for linear time-invariant equations, the state equations
can be expressed in the form

{(x} = [41{x} + [B){Q}

where [4] and [ B] are constant matrices. Selection of different state variables to describe
the motion of the same dynamic system leads to different [ 4] matrices which are all
similar matrices and reduce to the same Jordan normal form.

5.7 EULER ANGLES AND LAGRANGE EQUATIONS FOR
RIGID BODIES

We now extend the development of the Lagrange equations of motion to
include the general rotation of rigid bodies. In order to describe the orientation
of a rigid body, we need in general three independent coordinates. We have
seen in Chapter 2 that angular displacements are compounded by the law of
matrix multiplication, which is not commutative. Hence, a finite angular
displacement is a directed line segment but not a vector. Consequently, the
angular velocity components w,, w,, and ®; about the body axes cannot be
integrated to obtain the angular displacements about those axes. The direction
.cosines also cannot be used as generalized coordinates since they are not
independent but are related by a constraint. A set of generalized coordinates
that may be selected to describe the orientation of a rigid body consists of
Euler angles.

The choice of Euler angles is not unique but they involve three successive
angular displacements for the transformation from a set of Cartesian coordi-
nates to another. The rotations, however, are not about three orthogonal axes.
Then, the three components of the angular velocity of a rigid body are expressed
in terms of Euler angles and their time derivatives. In the following, we describe
a commonly employed method for the selection of Euler angles.
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5.7.1 Euler Angles

We select the origin of all the coordinate systems at a point in the rigid
body. If the origin is fixed in the inertial space, the xyz coordinate system is
referred to the inertial reference frame, whereas if the origin is moving, then
xyz coordinate system is a moving frame. We assume that the moving frame
always remains parallel to some inertial reference frame.

The rectangular frame 1-2-3 of Fig. 5.15 is assumed to be a body coordinate
system (i.e., rigid body is rigidly connected to this frame). We also assume that
the body coordinates represent the principal directions of the rigid body. We
are interested in describing the location of the 1-2-3 frame with respect to the
xyz frame. We assume an auxiliary frame x'y’z’. A sequence of rotations is used
for the xyz frame in order that it coincide with the 1-2-3 frame. First a rotation
¢ about z axis is given to bring axis x into coincidence with x’ axis. Next, a
rotation @ about the x” axis is used to bring the moving frame into coincidence
with the x’yz’ frame. Finally, a rotation y about the z’ axis is used to bring the
moving frame into coincidence with the body frame 1-2-3. The three individual
rotation angles, ¢, 8, and w are called Euler’s angles.

Figure 5.15 Euler angles.

Conversely, if the body frame is in a given orientation, the corresponding
Euler’s angles are determined as follows. The angle 6 is measured directly
between the z and 3 axes. The x” axis is the perpendicular to the plane formed by
the z and 3 axes. The angles ¢ and y are measured from the x’ axis to the x axis
and to the 1 axis, respectively. When the body changes its orientation, the
Euler’s angles change. Their time rate of change (i.e., é, 6, and y) are the
angular velocity components directed along z, x’ and 3 axes, respectively.
The resultant angular velocity of the body with respect to xyz reference frame is

O = du, + Ou, + yu, (5.125)

where u,, u4,., and u, are the unit vectors along the respective coordinate direc-
tions.
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The vector { can be decomposed into components with respect to any
convenient frame of reference. We can note the following relationships between
the unit vectors directed along the axes in Fig. 5.15:

mN Hm_ mmsmma.\\+mn mwnaoom.\\+muoom¢

1 COS YW — mN sin (5.126)

In fact we can transform from one coordinate system to another by employing
the rotational transformation matrices discussed in Sections 2.6 and 2.7. We have

[Cu)] =

Hﬁpaz =

[Cs(w)] =

—

cos¢ sing O
—sing cos¢ O
| O 0 |
1 0 0
0 cos@ sinf

0 —sinf@ cos@

cosy siny O
—siny cosy O
0 0 1

The transformation between the x'y’z" axes and the 1-2-3 axes is given by

U, u,
uyp = [Cs(W)]quy
U, u,
or
u, u,
uy o = [Cs(p)]"qu,
u, u,

because[C;(y)]represents an orthonormal transformation between two Cartesian
systems. The transformation between the xyz and the x'y’z’ axes is given by

u, U,
uy ¢ = [CLUOIC,(P)] quy
i, u,
cos ¢ sin ¢ 0
where [C2ADIC:(h)] = | —sin ¢ cos @ cosdcosf sinf
singsin@ —cosdsind cosf
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The transformation between the xyz axes and the 1-2-3 axes is obtained
from

uy U,
uyp = [CWICADIC(D)] Ju,
Us u,
:k
=[C]3y,
:N
or
Uy U,
uyp = [CTqu,
u, U
cos ¢ cos ¥ — sin ¢ cos @ sin y
where [C] = | —cos ¢ sin y — sin ¢ cos 0 cos y

sin ¢ sin @
sin ¢ cos y + cos ¢ cos @ siny  sin @ sin y
—sin ¢ sin y - cos ¢ cos @ cos y  sin @ cos
—cos ¢ sin cos @
Substituting the result from (5.126) in (5.125), we can obtain the angular
velocity in terms of components along the body axes 1, 2, and 3 as
O=w==@cosy +&m5.\\m5$m_ + (¢ sin @ cos y — 6 sin y)u,
+ (¢ cos 0 + ¥)u, (5.127)
where @ is the angular velocity of the body axes, or along the inertial axes x,
y, and z as
Q = (6 cos y 4 ¥ sin @ sin W, + (@ sin ¢ — v sin 6 cos evmu
+ (pcosf+ du,  (5.128)
or along the auxiliary axes x’, y’, and z’ in the form

O = 6u, + ¢ sinOu, + (¢ cos 6 + P, (5.129)
5.7.2 Euler’'s Equation for a Rigid Body

We consider the rotation of the rigid body about O fixed in the body.
The body is subjected to an external torque M, with components M,, M,, and
M, along the three principal directions. Let the principal moments of inertia
about O be I,, I, and I,. The kinetic energy T of the body is

T = 3,0} + $1,0% + 303
= w?% cos y + & sin  sin 8)* + wb@ sin @ cos ¥ — 0 sin w)?
+ 31,($ cos 6 + ¥)? (5.130)
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Substituting for T from (5.130) in the Lagrange’s equations (5.58), the equations
of motion in the three generalized coordinates ¢, 8, and y are obtained as

Lo, + U, — L)w,w, = M,
Lo, + (I — L)w,w; = M, (5.131)
Lo, + (I, — I)w,w, = M,

These equations are the same Euler equations that were obtained in Chapter 4.

Example 5.15
Using Hamilton’s equations, derive an equation of motion for a top on a horizontal
surface (Fig. 5.16). Assume the tip of the top to remain at a fixed point O.

2z

Figure 5.16 Spinning top.

Since the tip of the top is considered to remain at a fixed point, this requires the
existence of a horizontal reactive force by the surface on which the top spins. The axes
(%', ', z’) are fixed in the top with the origin at the tip O; the z’ axis is the axis of sym-
metry. Let the moments of inertia of the top about (x’, 3/, z’) axes be I, I, and I,
respectively. But because of symmetry I; = I,. The components of the angular velocity
@ in the (x’, 3, z’) axes are @, ,, and ;. The kinetic energy T of the top is given
as

T = i,0} + Lw3 + Lw}) (5.132)

Using the Euler angles @, ¢, and ¥ as the generalized coordinates, the angle of
the axis of the top with the vertical is 8. The angle of plane zOz’ with a fixed vertical
plane is @. The angle of rotation of the top about z’ axis is .

Substituting the values of w,, w,, and @, from (5.127) in (5.132), we get

T = 31,0, + ¢2sin? 0) + LI($ cos 0 + yr)?
The potential energy of the top is
U = mgacos 0

where m is the mass of the top and a is the distance from the origin O to the center of
mass,

The Lagrangian function L = T — U. As U does not depend on the time deriva-
tives (4, , ¥), dL/d0 = 3T/, and so on. The components of the generalized momen-
ta are
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N.. -
P = M|m =10
_ 9T _ (1, sin2 6 20)p + L cos O
Py = m& = (I, sin2 @ + I; cos? @) + sy cos
T . {
p3 = N.\ = Ly + ¢ cos )
Solving for mv &. and ¥ in terms of p,, p,, and p;, we get
) _ Py
0= T
¢ — P2 —pacos 0
I, sin2 8
. Py (P2 —p3cosf
.\\Ib A I, sin2 @ voOmQ

The Hamilton function H is given as
H =p,0 + pyd + psyp — 4102 + 2 sin2 ) — L115( cos § + )2 + mga cos @
Eliminating m.. &, and ¥/, we get

_pt | (py—pscosO)? | p}
H= o+ 5 s + a1, T meacost
Hamilton’s equations (5.121) become
y  O0H ;i O0H . JdH
- 92, _9H, _9H
3, A PR A P
oW . _ o . _ oH
D = 30 P2 %ﬁ ps3 %f\
Thus, the last three equations are written as
. _ _(pa —p3cosB)(ps — pycosh .
P = T sin @ + mgasin 8
P2 = 0
Py = 0

Therefore, p, = I, C = constant and p; = I3 D = constant. Hence,
¥ + ¢ cos @ = D = constant
& sin2 @ + bD cos @ = C = constant; b= 7
but

=10
Hence, it follows that
§— (L€ — I;D cos )3 D — 1, C cos ) | mea sin 8
- I?sin3 0 I,

We obtain by integration

g2 _(C*+ b2D2 — 2bCD cos 0)

: — ¥ cos @ + constant
sin2 @ ¥

M
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where
__2mga
Y= A
Assuming the additive constant in the preceding equation as N + b2D? and using
the substitution 4 = cos @, we obtain
42 =1 — u»)(N — yu) — (C — bDu)?

The other equations are

W+ ¢u=D
¢ — u2) 4 bDu=C
These are the three first-order differential equations which determine 6, ¢, and ¥ as
functions of time.

5.8 SUMMARY

In this chapter the equations of motion have been derived by methods based on
variational principles. As discussed earlier, this formulation has several advan-
tages. The use of generalized coordinates instead of the physical coordinates
makes the formulation quite versatile. The Lagrange method offers a powerful
alternative approach to the method of direct application of Newton’s laws to
obtain the equations of motion. In the method of direct application of Newton’s
laws, the constraint forces appear in the equations and have to be eliminated to
obtain the equations of motion. In the Lagrangian formulation, constraint forces
are ignored since they do not perform work in virtual displacement. However,
some of the impressed forces, such as frictional force, may depend on the
constraint forces, and also in some applications it may be necessary to evaluate
the constraint forces for the purpose of stress analysis and design. Simultaneous
use of both methods could be employed in such cases. Both methods could
also be used as a check of the results.

The Lagrange equations of motion consist of a set of simultaneous second-
order differential equations which are generally nonlinear in the generalized
coordinates and velocities. By choosing generalized coordinates and generalized
velocities as the state variables, the equations can be expressed as a set of coupled
first-order equations. An alternative approach is offered by the Hamiltonian
formulation, where generalized coordinates and generalized momenta are
chosen as the state variables to represent Lagrange equations as a set of first-
order equations. General rotation of rigid bodies can be studied by including
Euler’s angles among the generalized coordinates.

PROBLEMS

S.1. Consider the bead of Problem 3.1. Determine all equilibrium positions x, of the
bead by the principle of virtual work:
(a) Neglecting friction between the bead and wire.
(b) Including friction between the bead and wire.
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|
f 5.2. A uniform rigid bar of mass m and length b is supported as shown in Fig. P5.2, : y

Neglecting friction at the supports, determine the equilibrium position 8, by the

principle of virtual work. E

Y ;

— X

Figure P5.6 o

, < Figure P5.2 §.7. A cylinder of mass m, and moment of inertia I, about its longitudinal axis rolls
| ? . ® ’ without slipping on a wedge (Fig. P5.7). The wedge slides on Em. floor under the
5.3. Obtain the Lagrange equation of motion for the bead of Problem 3.1, including action of an applied force F(z). There is friction between the cylinder and wedge

friction between the bead and wire. and the coefficient of sliding friction between the wedge and the floor is 4.
5.4. Obtain the Lagrange equations of motion for the system of Example 3.4. Choosing x; and x, as generalized coordinates, obtain the Lagrange equations

a . of motion.
, 5.5. Mass m, is pivoted at the center of mass m; by a rigid massless link of length R

| (Fig. P5.5). Neglect friction at the pivot. The motion is in the vertical plane.
,7 Choosing y and 0 as the generalized coordinates, obtain the Lagrange equations
i of motion.

Figure P5.7

5.8. A uniform rod of mass m and length b is Hm_ammaa, from rest and slides in the
vertical plane (Fig. P5.8). The coefficient of sliding friction between the rod and
the ground is 4. Obtain the Lagrange equations of motion for the rod.

y

F(t)

3N .
Figure P5.5
5.6. A uniform rod of mass m and length 5 moves on the horizontal xy plane without
friction (P5.6). At one end A, it has a knife-edge constraint which prevents a
velocity component perpendicular to the rod at that point. b
(a) Write the nonholonomic constraint relating x, y, and f in the form of a
Pfaffian.
(b) Using x, y, and § as coordinates, obtain the Lagrange equations of motion. o
(c) Show that the Lagrange multiplier A represents the transverse force of con- e X
straint at end A. Figure P58 O]
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5.9. A particle of mass m is connected by a massless spring of stiffness & and un-
stressed length r, to a point P which is moving along a circular path of radius a
at a uniform angular velocity @, (Fig. P5.9). The coeflicient of friction between
the particle and the horizontal plane on which it moves is 4. Obtain the Lagrange
equations of motion.

Figure P5.9

5.10. Obtain Hamilton’s equations of motion for the system of Problem 5.4.
5.11. Obtain Hamilton’s equations of motion for the system of Problem 5.7.
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RESPONSE OF DYNAMIC
SYSTEMS

6.1 INTRODUCTION

The main objectives of the previous chapters have been the mathematical
modeling and formulation of the equations of motion. This chapter is concerned
with the solution of the equations of motion that were formulated. We first
discuss the state-space formulation of the equations of motion. This formulation
permits the application of many mathematical techniques, such as Lyapunov
stability theory, which have been developed for a system of first-order ordinary
differential equations. The existence and uniqueness of the solution to the
equations of motion are studied next.

It should be noted that in most nonlinear problems, it is not possible to
obtain a closed-form analytic solution to the equations of motion. Hence in
such cases, a computer sithulation is generally used for the response analysis and
these techniques are disucssed in the next chapter. In this chapter, we concen-
trate on linear time-invariant equations of motion. Such equations usually
represent perturbations from an equilibrium state or from a stationary motion.

For this restricted case of linear time-invariant equations of motions we
.QSEO% the state transition matrix in order to obtain the response to time-vary-
Ing forces and moments. Finally, in order to gain insight into the dynamic
behavior of such systems, we consider coordinate transformation so that the
coefficient matrix of the state equations is represented in the Jordan canonical
or normal form, thereby exhibiting its eigenvalues along the main diagonal.
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RESPONSE OF DYNAMIC
SYSTEMS

6.1 INTRODUCTION

The main objectives of the previous chapters have been the mathematical
modeling and formulation of the equations of motion. This chapter is concerned
with the solution of the equations of motion that were formulated. We first
discuss the state-space formulation of the equations of motion. This formulation
permits the application of many mathematical techniques, such as Lyapunov
stability theory, which have been developed for a system of first-order ordinary
differential equations. The existence and uniqueness of the solution to the
equations of motion are studied next.

It should be noted that in most nonlinear problems, it is not possible to
obtain a closed-form analytic solution to the equations of motion. Hence in
such cases, a computer simulation is generally used for the response analysis and
these techniques are disucssed in the next chapter. In this chapter, we concen-
trate on linear time-invariant equations of motion. Such equations usually
represent perturbations from an equilibrium state or from a stationary motion.

For this restricted case of linear time-invariant equations of motions we
employ the state transition matrix in order to obtain the response to time-vary-
ing forces and moments. Finally, in order to gain insight into the dynamic
behavior of such systems, we consider coordinate transformation so that the
coefficient matrix of the state equations. is represented in the Jordan canonical
or normal form, thereby exhibiting its eigenvalues along the main diagonal.
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Such transformation will also be useful in Chapter 8 for the normal-mode
analysis of linear vibrations.

6.2 STATE-SPACE REPRESENTATION

When time-domain analysis of the equations of motion is desired, it is preferable
to express the equations as a set of first-order differential equations. This
formulation permits direct application of many mathematical methods that
have been developed for a set of first-order ordinary differential equations.
Consider a system with k degrees of freedom and letq,, . . . , g, be the generalized
displacement coordinates. We recall that the equations of motion that were
derived in Chapters 3 and 4 by the direct application of Newton’s law and the
Lagrange equations derived in Chapter 5 consist of a set of k second-order
coupled equations in the generalized coordinates. Defining generalized velocity

coordinates ¢y, . . . , 4, and an n-dimensional vector {x}, where » = 2k, as
' {q}
{x} =42 (6.1
{4}

the equations of motion can be expressed as a set of first-order coupled equations
in the form

M.&wnm\.ﬁuﬂ:...'ka. Q:...wQ!u va AONV

In the foregoing equation, Q,, ..., Q,, are the input forces and moments and
f1, being an explicit function of time z, indicates that the parameters such as mass
may be time varying. The n-dimensional column vector is called the state vector.
In the Hamiltonian formulation of Chapter 5, the state vector {x} consists of £
generalized coordinates ¢, ..., q,, and k generalized momenta coordinates
Dis -+ - Py in the form

o= 19 (6.3)

{p}

and Hamilton’s equations have been already expressed in the state-variable form
of (6.2). In some cases considered in the previous chapters, some of the gener-
alized displacement coordinates are ignorable and need not appear in the
equations of motion, which, however, include the generalized velocities. In such
cases, the state-variable vector {x} need not include the ignorable displacement
coordinates and its dimension n will be less than 2k, where k are the degrees of
freedom. For example, the Euler equations of motion of a rigid body were
derived in Chapter 4 and are described by

. _ L= M,

W, = |- W05 + T,

o, =~ Lo 0, 4 Mo (6.4)
I, T

. _ L —1 M,

w; = ‘|Nw w,w, -+ H’
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where @, is the angular velocity, M, the applied external moment, and I, is the
principal moment of inertia for i = 1, 2, 3. Here, the angular displacements do
not appear in the equations of motion and are ignorable coordinates. Even
though we consider three degrees of freedom, we define only a three-dimensional
state-variable vector {x} as {x} = {®} and then (6.4) are already in the standard
form of state equations given by (6.2) with Q, = M, (i = 1, 2, 3) and f, is not
an explicit function of time since the parameter I, is a constant.

Each state {x}of a system may berepresented as a point in an n-dimensional
Euclidean space whose coordinates are x,, ..., x, as shown in Fig. 6.1 and
may be viewed as an n-dimensional vector x. The Euclidean space £” is a linear
vector space which is complete, normed, and where an inner product has been
defined. The norm and inner product are defined, respectively, by

i = (35 x2y 6.5
and
T, x)y = M xP=Ix|P (6.6)
x3
X0
TRAJECTORY
X2

Xq

X

xn

X5
Figure 6.1 State space.

The norm of a state is the distance in the n-dimensional space of the state
from the origin. This space, which is called the state space of the system, permits
us to extend the concepts of the geometry of motion of a single particle in a
physical space which is at most three-dimensional to the motion of a dynamic
system in an n-dimensional space. When all the state variables consist of gener-
m_._Noa displacements and generalized velocities as in (6.1) or of generalized
displacements and generalized momenta as in (6.3), the state space is also
referred to as phase space, after Gibbs.

Given an initial state x, at time ¢ = #, and specified input forces and
moments Q(¢), the system state will change from x, with time. The set of values
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that the state takes at times ¢ > ¢, is denoted by x(r) or, more specifically, by
x(Xq, to: Q, 1). The set of points traced out by x(x,, 2,; Q, ?) is called the state
trajectory of the system. Hence, a state trajectory of the dynamic system of (6.2)
is a particular solution when the initial conditions x, at time ¢, and the inputs
Q(¢) are specified. It should be noted that time ¢ plays the role of a parameter
along system trajectory in state space. It is possible to introduce an additional
time coordinate ¢ and to define an (n + 1)-dimensional space (x, ¢) called the
motion space. We shall employ the state space, not the motion space, in our
analysis.

When all the # initial conditions x, for the system of (6.2) are specified
at the initial time ¢, the problem is called the initial value problem of ordinary
differential equations. There are some applications where some of the conditions
are specified at the initial time ¢, and some at the terminal time ¢,. For example,
in certain control problems the inputs Q(#) must be synthesized such that the
state of the system of (6.2) is changed from a certain initial state to a terminal
state which may be partly specified. This class of problems is called the boundary
value problem of ordinary differential equations. In our analysis, we shall be
concerned only with the initial value problem of ordinary differential equations.

6.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section we are concerned with the existence and uniqueness of solutions
of initial value problems of ordinary differential equations. The existence of a
solution to the equations of motion cannot always be implied from the fact that
a dynamic system will respond to external forces and moments. Many assump-
tions are made in modeling dynamic systems, and when the equations of motion
have no solution, this may be an indication that the equations do not adequately
represent the dynamic system. It is more important to consider the uniqueness
of a solution since a dynamic system can have nonunique modes of behavior.
As pointed out earlier, a computer simulation is generally employed to obtain
the response of nonlinear equations of motion and when a solution has been
obtained, its uniqueness should not be taken for granted.

In the following, we consider the conditions that are sufficient to guarantee
the existence and uniqueness of the initial value problem of ordinary differential
equations. Again, it should be noted that these conditions are not necessary and
sufficient but only sufficient conditions and when they are not satisfied, it does
not imply that there is no solution or that it is not unique. After completely
specifying the input forces and moments Qy, ..., On for time ¢ > ¢,, the initial
value problem of (6.2) is expressed as

x = f(x, 1), X=X, att =1, 6.7)

Theorem 6.1: Local Existence and Uniqueness. For the system of ( 6.7),
let f(x, 7) be continuous with respect to x and # in a region R of the state space
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defined by the ball || x — X, || << @ and in the time interval | — ¢, | << b, where
a, b > 0. If there exist finite positive constants & and /, where 0 << k, h < oo
such that for any two vectors x, and x, in region R, the conditions

1(xa, ) — £xp, D < k[ Xa — X4]l, XX, € R, 1 —1,|<b  (6.8)

) max || f(x, 1) || = A, xR, [t—1t,|<bh (6.9)

are satisfied, then there exists a unique solution to (6.7) in R for [t — t,| < ¢
with ¢ obeying

qm?: ?, ﬁ a._e

Remarks

1. The condition (6.8) is known as a Lipschitz condition and the constant k&
is known as a Lipschitz constant. If &k is a Lipschitz constant for the func-
tion f(x, ) so is any constant larger than k. To satisfy the condition (6.8),
every component f«(x, t) of the vector function f(x, ) must satisfy a Lip-
schitz condition, where the Lipschitz constant may be different for each
component.

2. We note that condition (6.8) is a local Lipschitz condition because it holds
for all x, and x, in some ball around x, (i.e., in the region Rand for time
such that |z — ¢, | << b). Accordingly, Theorem 6.1 is a local existence and
uniqueness theorem because it guarantees the existence and uniqueness of
solution only in that interval around x, and ¢,. Stronger conditions for
global existence and uniqueness are given by the following theorem.

Theorem 6.2: Global Existence and Uniqueness. If conditions (6.8) and
(6.9) of Theorem 6.1 are satisfied throughout the entire state space E* and for
time ¢, << t << oo (i.e., the constants g and b of Theorem 6.1 are both infinite),
then system (6.7) has a unique solution throughout the entire state space for all
time £, << < oo,

Example 6.1

To illustrate the theorem, we consider a very simple example of a scalar, linear, un-
forced differential equation described by

x = —3x
Here, f(x) = —3x and hence we obtain

1 f () — fxp |l =1 f(xa) — f(xp)]
=3|—x, + k,m_
Any number k such that ¥ = 3 can be found as the Lipschitz constant for z, << t < oo

and for any x, and x; in the entire state space. Hence, the conditions a.wvﬂza (6.9)
are satisfied with @ and b both infinite. We then conclude that this example has a unique
solution throughout the entire state space (one-dimensional in this case) for all time

0 <t < co. In fact, it is shown later by considering equation (6.70) that a linear time-
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invariant system always satisfies the conditions for global existence and uniqueness of
solution.

Example 6.2
A vehicle is moving down a plane inclined at angle & to the horizontal as shown in
Fig. 6.2, with a resistive force proportional to the square of the velocity. Consider the
vehicle as a point mass with a single degree of freedom. The equation of motion may be
written as

mg + cg* = mgsin o (6.11)

Figure 6.2 Particle moving down an
inclined plane,

Letting the state variable x = ¢ and F, = mg sin &, the equation becomes
.__ ¢ 2, K
X=—x + - (6.11a)

with initial condition x, = 0 at time z, = 0. Here, we have a scalar first-order equation
and f(x) = —(¢/m)x? + (Fp/m) and a graph of f(x) versus x is shown in Fig. 6.3.

f(x)

Figure 6.3 Plot of f(x) versus X.

For a first-order time-invariant system for any two values x, and x; of x, the Lipschitz
condition can be written as

_.\Aknv _ .\Akuv~ < k A@HNV

_kn — kh_

Condition (6.12) implies that on a plot of f(x) versus x, a straight line joining any two
points of f(x) cannot have a slope whose absolute value is greater than k. It is not
required that f(x) be continuously differentiable. However, if f(x) is differentiable and
the maximum value of | df/dx | in the region R is k, then k is a Lipschitz constant. From
this discussion it is clear that a local Lipschitz constant can be found for any interval
of finite length about x, for this example. However, a finite positive k << co cannot be
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found to satisfy a global Lipschitz condition. Hence, this example satisfies the condi-
tions of Theorem 6.1 but not those of Theorem 6.2. Since these conditions are not
necessary, this fact does not imply that this example has a unique solution only in a
finite region around the initial condition x, and not throughout the state space. An
exact closed-form solution for this example can be obtained by separating the variables.
Noting that x, = 0 and ¢, = 0, we get

* dx’ R,
b = (Fd&?  m % a@ (6.13)
Integrating both sides of the foregoing equation, it follows that
1 + Ac[Fox A 2 =
T VelFox exp (- )\aﬁiv (6.14)

Solving the equation above for x, we obtain
Fy exp [(2/m)/cFot] — 1
¢ exp [(2/m)a/cFot] + 1

Fo cF,
H)\Mo S:U)\ Oy (6.15)

m

x(t) =

Example 6.3
Consider a first-order differential equation

i1 (6.16)
Here, f(x) = 1/(x — 3) and if a region R around the initial condition x, contains the
point x = 3, it is clear that no finite 4 can be found at the point x = 3 in this region to
satisfy condition (6.9) of Theorem 6.1. For x == 3, we have df/dx = —1/(x — 3)? and
|dfjdx| = 1/(x — 3)2, which is finite for x = 3. Hence, this example does not satisfy
the conditions of Theorem 6.2 but only those of Theorem 6.1 in a region that does not
contain the point x = 3.

Example 6.4

A ?.:oao: f(x) that is discontinuous does not satisfy a Lipschitz condition at the point
of discontinuity. Consider a function f(x) which has a unit jump at the point x = 3
as shown in Fig. 6.4. Let x, and x; be any two values of x on either side of the point
x = 3 such that|x, — xz| = 0.001. Then from (6.12), the Lipschitz constant is given by

k= 10%| f(xa) — f(xp)| (6.17)

Now let both x, and x,; tend to the point x = 3 from the left and right, respectively.
Then, we get lim | x, — xg| — 0, whereas lim | f(x,) — f(xz)| — 1. Hence, no finite
k can be found to satisfy the Lipschitz condition at the point x = 3.

In many applications, dynamic systems are subjected to impulsive forces
and moments and f(x, #) may be discontinuous with respect to ¢ at a finite or
countably infinite number of points. In such cases Theorem 6.2 would not apply,
but according to Theorem 6.1, a unique solution may be guaranteed over those
time intervals where the discontinuities do not occur.
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Proof of Theorem 6.1. A proof of this theorem may be obtained by
employing the contraction-mapping fixed-point theorem. However, this method
requires some techniques from functional analysis whose knowledge is not
assumed here. Hence, we give a proof employing Picard’s method of solution of
the differential equations in the form of the Liouville-Neumann series. If x(¢)
is a solution of (6.7) in the region R defined by ||x — X, || << @ and in the time
interval |t — ¢, | << b, then in that region x(¢) also satisfies

x(f) = X, - % f(x(t"), 1) dt’ (6.18)

On the other hand, continuous functions that satisfy (6.18) are differ-
entiable and satisfy (6.7). Equation (6.18) is a nonlinear Volterra integral equa-
tion. According to Picard’s method, a first approximation to the solution is a
function x, defined by

I N

Figure 6.4 Discontinous function.

X, — X, + % f(x,, 1) dt’ (6.19)
Similarly, we get a sequence of successive approximations as

X, = X, + % f(x,(t), ') dt’

X, = X, - % f(x,_ (), t) dt’

We now consider the series
X(1) = Xo + (X; — Xo) + (X2 — X))+ -0 + (X, — Xpo1) + oo (6.20)

Equation (6.20) is called the Liouville-Neumann series solution of the
nonlinear Vollerra integral equation. We now show that when the conditions of
Theorem 6.1 are satisfied, the series converses and represents the unique solution
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of the original equation. First, we prove that any term of the foregoing sequence
also belongs to the region R. We have

X, — Xo = .—N f(x,, t") dt’
Thus, !
lx, — Xl = :.ﬁ f(x,, t) &N\‘

< [ IMexo, 0y 1 a -

<hlt—t,] from(69) . . te2l)
< he o \..\....\
<a from (6.10) (6.22)

Hence, x, belongs to the region R. Similarly, we can show that each x,,(¢)
belongs to the region R. Second, we now show that the series (6.20) converges.
We have

s — 1 < [ I6G6, (0, 0) — Bxo, 1)

mi X, — x,/|d*"  from (6.8)

< kh ?x —told  from (6.21)
(r — t,)*

< k=

< zlm

By mathematical induction, we can show that

k™~ 1hcem

:NS‘NSIMZM m!

(6.23)

Hence, by ratio test we conclude that the series (6.20) converges abso-
_Eo_u\ and uniformly when x is in region R. Therefore, the limit function
_.Eusxaxss exists and is continuous in R. That x(¢) as defined by (6.20) is
Indeed a solution of (6.7) can be established by noting that

x(1) = lim x,,(7)

= xo + lim [ f(x,_,, ") dt’

m—oo

=x, + [ limfx,_,,)de

Ly mSoo

= Xy + % f(x, t') dt’ (6.24)
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The interchange of the order of integration and limit in the foregoing can
be justified from the fact that

[ 186 1) = $60 1 1) 1 <k [ % = oy |1
k™he™ ke k2c?
< DTy Tl 6l (629

which approaches zero as m — oo,

Now, it remains to be shown that the solution thus obtained is the unique
solution of (6.7). For this purpose, let y(r) which belongs to region R be another
solution of (6.7). Subject to the restriction that ||y — x|| << 4. Then, we have

Y= x| fy. ) ar

Xy = %o + [ oy, 1) d
from which it follows that
1y = %1l < [ 118 £) = 8o, )
<k [ Iy —xpilldr

m AN — ! VS
< kmd |\§_o (6.26)
Since the right-hand member of inequality (6.26) approaches zero as
m — oo, we see that

y = limx, = x (6.27)

Hence, when the conditions for the existence and uniqueness of solution

are satisfied in a region R and for all times in the interval |t — ¢, | <C b, for all

initial conditions x, in the region R there is a trajectory of the system with these

initial conditions. This trajectory is unique. Furthermore, the trajectories are
continuous with respect to the initial condition x, and the initial time ¢,.

6.4 LINEARIZED TIME-VARYING SYSTEMS

It can be seen from the previous chapters that the equations of motion are in
general nonlinear. We consider perturbations from an equilibrium state or
from a nominal motion. When all the nonlinearities are analytic functions of
their arguments and the perturbations are sufficiently small, it is possible to
linearize the equations that represent the perturbed motion. Let x*(Q%*, 7; X,
t,) be a particular trajectory starting at time ¢, with initial conditions x, and
specified input generalized forces Q*. In general, this particular motion x* can
be obtained by computer simulation of the equations of motion of (6.2).
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Consider the effect of perturbations Ax, on the initial state and AQ on
the input forces. Let x(Q* 4+ AQ, ¢; x, + Ax,, t,) be the resultant perturbed
motion. The vector Ax(r) of perturbed state variables is defined by

Ax(t) = x(t) — x*(1); that is, x(r) = x*(t) + Ax(?) (6.28)

Now, x(¢) from (6.28) is substituted into (6.2) and, assuming that f(x, Q, 1)
is continuously differentiable with respect to x and Q, the resulting equation is
expanded in Taylor series about the particular motion x*(¢). Let A(r) and B(?)
denote the (# X n) and (n X m) Jacobian matrices defined, respectively, by

| Of .. 9fi]
dx, dx,
A = wlm = . (6.29)
af, ... 9f,
_0x, 0x,_| 2050 hd 00=000
and
[ dfy ... 9fi
%QN %QE
¢ .
B() — %d _ . (6.30)
o ... dfa
00, 00 ,_|36250 dha 00=-0'0)

Taylor series expansion then yields
x* + A% = f(x*, Q*, 1) + A(r) Ax + B(r) AQ + h(Ax, AQ, 1) (6.31)

Assuming that h(Ax, AQ, r) contains only terms that are higher than the
first degree in Ax and AQ resulting from the Taylor series expansion about x*(r)
and noting that the particular trajectory satisfies the equation

x* = f(x*, Q*, 1)
equation (6.31) for small perturbations becomes
Ax = A(r) Ax + B(r) AQ (6.32)

This system represents a set of first-order linear equations in the perturba-
tions, where the matrices A(r) and B(¢) are functions of time. These equations
play a very important role in stability and sensitivity analyses and in control
system synthesis. The matrix A(r) is useful for the stability analysis of the
Particular trajectory for small perturbations and will be employed in Chapter 9.
The matrix B(r) is useful for the sensitivity analysis to investigate the changes in
Ax due to changes in the input AQ. In aerospace applications, it is common
practice first to determine a nominal trajectory for a spacecraft. The linearized
perturbation equations (6.32) about this nominal trajectory are then employed
for further analysis. Later in this chapter, we shall employ the linearized pertur-
bation equations about an equilibrium or stationary motion, where the matrices
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A and B are constant and time invariant, for the analysis of linear vibrations.
For the simplicity of notation, we replace Ax by x and AQ by Q and represent
(6.32) in the form

x = A()x -+ B(1)Q (6.33)
with the understanding that here x and Q represent deviations from their
nominal values.

Example 6.5

For the sake of illustration, we consider a simple example of the Euler equations of
motion (6.4), where a particular trajectory can be obtained analytically in a closed
form. In (6.4), let I; = I, = I, My = M; = M; =0, and the initial conditions be
@1(0), 0,(0), and w4(0) at initial time #, = 0. From the last equation of (6.4), we see
that w; = const. = 3(0) and this particular motion is described by

(on A~/ @HO0) + w3(0) sin (&t + B)

Wyt = 4/@D30) + w3(0) cos (ar + B) (6.34
(OF} @;(0)
where
o0 = ~||~ DS%Q and B = EDJNM%W

After obtaining the Jacobian matrices A(f) and B(y) defined by (6.29) and (6.30),
respectively, for the system of (6.4), the equations representing the linearized perturba-
tions about this particular trajectory are described by

A, 0 o y cos (&t + B)7 (Aw,

A,y =|o0 0 —ypsin(ar + ) |[{Aw,

Al 0 0 0 A,
_ﬁ% 0 0
AM,
+lo 1 oM, (6.35)
A
0 0
where
[ — I

¥ = [0H0) + 02O)]'*—

6.4.1 Solution of Linear Time-Varying Equations

The linear unforced system corresponding to (6.33) is given by
X = A()x, X=X, att=t, (6.36)

If every element of the matrix A(z) is piecewise continuous* for some

*Actually, it is sufficient that A(z) be Riemann integrable. A function that differs from a
piecewise-continuous function on a set of zero measure is Riemann integrable and both inte-

grals have the same value.
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interval of time, there exists a unique solution of (6.36) in that interval. Since
A(z) is piece wise continuous, we can find a Lipschitz constant & to satisfy
condition (6.8) of Theorem 6.1 such that

I A@Dx, — A, || < K[l X — x4 || (6.37)

for any x, and X, in the state space during that interval of time. At the points
of discontinuity of A(¢), X and hence (6.36) are not defined. In the case of the
forced system (6.33), it is sufficient for the existence and uniqueness of solution
that both A(z) and B(¥)Q(2) be piecewise continuous.

Assuming that the sufficient conditions for the existence and uniqueness
of solution have been satisfied, the actual solution can be obtained as follows.
The system

x = A()x + B(1)Q, X=X, attr=t, (6.38)
may be alternatively expressed as
X = A(Dx + x,0(t — ;) + B(H)Q (6.39)

where d(t — t,,) is a Dirac delta function. Hence, we have

ﬁ % | k&x — X, 8(t — 10) + B()Q (6.40)

where I'is a (n X n) identity matrix. Then, it follows that
d -1 d -t
(1) = TM - Z& X, Ot — 15) + TM — Z& B()Q()  (6.41)

. The inverse of a differential operator is an integral operator and the kernel
1s called the Green’s function matrix and, in this case, is represented by G(z, t°).
Equation (6.41) may then be expressed as

x(?) = ;.

b

wo? )% 8(t — ;) dt’ - hg G(t, t)B()Q() d  (6.42)

Since the independent variable is time ¢ and the system is causal (i.e., it
does not respond in anticipation before an input is applied), we have G(¢, ') =
O for #" > t. This Green’s function matrix for the initial value problem of
ordinary differential equations is called the state transition matrix and is
represented by ®(s, ¢'). Hence, (6.42) is expressed as

x(1) = % D@, )%, Ot — 1,) di’ +- % O, )B(QI) dt' (6.43)
= 0, 1% + | @, 1) BE)Q() dr’ (6.44)

The problem now is the determination of the state transition matrix ®(z, t').

For this purpose, multiplying both sides of (6.43) by Tm — >QL. we obtain

P P R
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ﬁ 4 k&xe H TM/ k& % e?&ﬁ%fi&

+ TI NG, % @1, 1)B()Q() dr’
Employing Leibnitz’s rule, the foregoing equation becomes

ﬁmm - >ADHTQV = ®(, N\vko%Q — 1)

L; AW 00, 1%, 8" — 1) dr
+ ®(1, H)B(OHQ(r)
+ % HI — k&e? MBEYQ() di (6.49)

Equations (6.45) and (6.40) must be the same. Hence, comparing these two
equations, we obtain
ﬁ M _ k&e? =0 (6.46)
with conditions
O, 0)=1 (6.47)
Hence, the state transition matrix @(z, 1) is obtained from the solution of
(6.46) with conditions (6.47). A closed-form analytical solution of this linear
time-varying parameter equation (6.46) is not possible in most cases and a
computer simulation must be employed.

Example 6.6
In this example, given by Hsu and Meyer [2], we consider a second-order Euler linear
differential equation

%x+@%+&x|o (6.48)

with initial conditions x(¢) and —; dx Qov This example may have no practical applica-

tion in dynamics but is no:m_aonoa :ono for the purpose of illustration. By substituting
t = e (i.e., T = Iny), (6.48) can be reduced to an equation with constant coefficients.

We get

dx _dxdt _ 1.dx (6.49)
dt  dt dt t dt

dx_ d(1d)

dr2  de\t dt
L, 14 6.50
=~natrde 6.50)

Employing (6.49) and (6.50) in (6.48), we obtain
dix L6x=0 (6.51)

dt? + u&.n
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The foregoing equation is a linear time-invariant (i.e., constant-parameter) equa-
tion. Choosing the state variables as x; = x and x, = dx/dt, the state transition
matrix can be obtained by employing the techniques discussed in the next section and
is given by

eﬁ.ﬂ.v .ﬂ.ov = *H

Je~2mT)  DpT3(-r)  T2(r—70) _ @7 3(r—70)

; (6.52)

—Ge~2(r—70) -+ Ge~3(r~T0) — e~ 2(r—70) + 3Je~3(r—70)

For equation (6.51), as is the case for all linear time-invariant equations, we note
that ®(7, 7,) = ®(T — 7o) or ®(7,T') = ®(T — 7°). From equation (6.44), since in
this case Q = 0, the solution can be written as

[ A () ]
Nn|x - fo\? % to\2 to\? Nn|xcv
e R e O L
or
I : 41
MWH AMVN ANV NWu - A M%ov 6.53)
ail | -6l el o) +3(") 4 (o)

The state transition matrix @(¢, fo) is now obvious by inspection of (6.53) and
®(z, ') is obtained by replacing t, by ¢’ in @(s, ¢,). Here, as is the case for all linear
time-varying equations, we note that @(z, ¢) %= ®(¢r — ¢’), unlike linear time-invariant
systems. As discussed earlier, unless the time-varying linear equation is of a standard
form, such as Bessel’s equation, it is not possible to obtain a closed-form analytic solu-
tion for ®(¢, t) and computer simulation is generally required.

6.5 LINEARIZED TIME-INVARIANT SYSTEMS

We now consider a special case of the equation of motion
x =1(x,1Q) (6.54)

where the input forces and moments are constants or zero and in addition the
parameters are time-invariant such that the functions f; are not explicit functions
of time. In that case, (6.54) reduces to the form

% = f(x) (6.55)

The foregoing system of equations is called an autonomous system. A state x,
of (6.55) is called an equilibrium state if, starting at that state, the system will
remain in that state in the absence of forcing functions or disturbances. Since
for equilibrium % = 0, the equilibrium states are found from the solution of the
nonlinear algebraic equations

fix) =0 (6.56)
A set of nonlinear algebraic equations may have no solution. On the other hand,

it may have one or infinite number of solutions. When the equilibrium states
are countable, they are called isolated equilibrium states. When every state of
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a connected region satisfies (6.56), this set of states is called an equilibrium zone.
There is a lack of a theory analogous to Theorem 6.1 concerning the solution
of a set of nonlinear algebraic equations.

We consider an isolated equilibrium state x, and let Ax(f) be perturbed
state variables defined by

Ax(t) = x(¢) — x,; that is x(r) = x, + Ax(¥) (6.57)

Assuming that f(x, Q) is continuously differentiable with respect to x and Q,
we employ Taylor series expansion about the equilibrium point x,. Now, the
Jacobian matrices of equations (6.29) and (6.30) are evaluated at the constant
values x, and Q, and hence the matrices A and B are constant matrices. For
small perturbations, the linearized equations analogous to (6.32) become

Ax = A Ax + B AQ (6.58)

It should be noted again that the matrices A and B are constant when the
equations of motion (6.55) are autonomous and the Taylor series expansion is
about constant values. For the simplicity of notation, we replace Ax by x and
AQ by Q and represent (6.58) in the form

X = Ax + BQ (6.59)
with the understanding that here x and Q represent deviations from their
equilibrium values.

Example 6.7
We consider a mass, linear damping, and nonlinear soft spring described by the

equation

mi + ek + »Ax _ Mv —F (6.60)

Choosing the state variables as x; = x and x, = X, the state-equation representation
becomes

Let F = 0. The equilibrium states are determined from the solution of the algebraic
equations

The solution yields three isolated equilibrium states given by
0 A6 —4/ 6
?LH* v * v and * v
0 0 0
0

0
this equilibrium in the state variables and AF be the deviation in the input force. For

We first consider the equilibrium “ v and let Ax, and Ax, be deviations about
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small deviations, the linearized equations are described by

9fi 9f 94
Duy %.x.~ %.&N DXH %Nﬂ
= AF 6.61
*?.L i af AENV R FYA .61)
%.x.m %.KN %m.
Evaluated at
x1=0, x2=0,
F=0
Hence,
. 0 1 0
WJ o A?:v iy lAF (6.62)
s A8 R

Here, the A and B matrices are given by (6.62). Since, in this case we have only a single
force input, the B matrix becomes a column matrix.
A/ 6 v A\)\ 6
and
0 0
Jacobian matrices of (6.61) at the equilibrium states (x; = +4/6, x, = 0, F = 0), for
both equilibrium states the linearized equations are given by

0 1 0

AE._V | . ﬁi iy bAF (6.63)
A% 125 <€ Ax,
m m m

We now consider the equilibrium states A v Evaluating the

Example 6.8

In this example, we consider a mass, linear spring, and nonlinear Coulomb friction as
shown in Fig. 6.5. This system is unforced and the equation of motion is given by

mi + umgsgnx + kx =0 (6.64)

with initial conditions x(0) and x(0). The function sgn X = +1 for x > 0 and —1 for
X << 0 as shown in Fig. 6.6. For ¥ = 0, —1 < sgn x < 1 but is otherwise undefined.
Choosing the state variables as x; = x and x, = X, the state equations are described
by

Xy = X,

. k

Xy = ———Xx{ — sgn x
2 m 1 HEg sgn x,

(6.65)

sgn x

Figure 6.5 Mass, spring, and Coulomb
friction.

Figure 6.6 Sgn function.
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The equilibrium states are obtained from the solution of the nonlinear algebraic
equations
0= X2
k

0= it Mg sgn x,

(6.66)

From the first equation of (6.66), we get x,, = 0 and from the second

_ pmg umg
k MXH@A k

Hence, in this example we get an equilibrium zone as shown in Fig. 6.7. It should be
noted that dry sliding friction between two surfaces in contact may be more com-
plicated than Coulomb friction, as static friction can be higher than Kinetic friction and
the magnitude of the kinetic friction may be a function of the sliding velocity. Also, in
this example, linearization of the form (6.58) is not possible even for small changes
from the equilibrium zone, as the function

k
Sa(x1, X)) = ——x1 — Ugsgnx,

m
is not an analytic function of its arguments.

xp

EQUILIBRIUM ZONE

Figure 6.7 Example of equilibrium zone.

Example 6.9: Stationary Motion

In some cases, the forces and moments acting on a dynamic system have constant
values and as a result the generalized velocities may also be constants. Such a motion is
called stationary motion and, if the generalized displacements do not enter the equa-
tions of motion, only the generalized velocities can be chosen as the state variables.
As an example, consider the Euler equations of motion (6.4) when the applied mo-
ments My, M,, and M, are constants. The constant values of ®@;, @,, and @; can be
obtained from the solution of the nonlinear algebraic equations

_ L1 M,

0= |N_ w,0; + T,
0= lN_ — Nueueu + @ AQ.Q‘NV

I I

. bL—h M;

0= T, W, + T,
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The linearized equations for small perturbations about a stationary motion
obtained from the solution of (6.67) can be expressed as

Ad, Ao, AM,
Ad, s = [A]]Aw,} + [B1AM, (6.68)
Ad, Aw, AM,

Hence, the linearized equations of perturbations about an equilibrium state or
stationary motion can be represented in the form of (6.59).

6.5.1 Solution of Linear Time-Invariant Equations

The linear unforced system corresponding to (6.59) is given by

{x} = [A]{x}], {x} = {xo} atr=1, (6.69)
Here, {f(x)} = [A4]{x} and condition (6.8) of Theorem 6.1 becomes
1(xa) — f(xp) || = [[Ax, — Ax, ]|
= [[A(x, — x| (6.70)

< [JATHI % — x|

Now, it is known that || A || <<| Auax |, Where | 1., | is the absolute value of
the maximum eigenvalue of matrix [4]. Hence, a global Lipschitz constant can
always be found such that k >|24,,.]. As a result, a linear time-invariant
system (6.69) always satisfies the conditions for global existence and uniqueness
of solution. The solution of the linear system of equations

X = Ax -+ BQ, X =X, att —=t, (6.71)
can be expressed, as shown in the preceding section, in the form
x(1) = @ — t)x, - % O+ — )BQ() dr’ (6.72)

where for time-invariant systems, the state transition matrix ®(¢, 7,) = ®(t — 1,)
and ®(z, t) = ®(t — t'). To obtain the state transition matrix, we can set
t" = 0 in (6.46) and solve the equation

d - .
TN ~ TS —0  with
Many methods are available for obtaining a closed-form solution of
(€.73). Here, we employ the method of Laplace transformation. Letting ®(s)
be the Laplace transformation of ®(¢), from (6.73) with initial condition ®(0) =

I, we get

®(0) =1 (6.73)

Ls®(s) — I — Ad(s) = 0
or
(sI — A)D(s) = I (6.74)
Hence,

®(s) =sI — A]"!
®@F) = L\([sT — A]"Y) (6.75)
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where L~! denotes the operation of inverse Laplace transformation. Then
®(+ — t,) and ®(+ — ¢’) are obtained by replacing ¢ by t — ¢, and ¢ — ¢/,
respectively, in (6.75). The state transition matrix may also be expressed as
matrix exponential for time-invariant systems in the form

D(t) = e (6.76)

Then ®(z — ¢,) = e*** and ®(t — t') = 2%, It can be seen easily that the
matrix exponential form (6.76) for ®(¢) does indeed satisfy (6.73).

Example 6.10

We consider equations (6.62) of Example 6.6. These equations represent deviations
0

about the equilibrium A 0

V and, replacing Ax by x and AF by F for simplicity of nota-

tion, are given by

% 0 1 * 0
m m m

We define the natural frequency @, and the damping ratio { as

_Jk 1 ¢
8:!)\ﬂ:x and m\wﬁ|555

Now, the foregoing equations may be written as

. 0
0 1

ﬁ; _ ﬁ ; ﬁ:v + 4 lF 6.77)

X, 'eww ‘Nﬁea Xy y\

Hence, the A matrix is given by
0 1

A= 6.78
ﬁem \NQL (€79

It follows that

s —1
== ot

s + 2lw, 1
(T — A1 = \w , w (6.79)
A A

where A is the determinant of the (sT — A) matrix (i.e., A = s2 + 2{w,s + ®2). Here,
A = 0 is the characteristic equation whose roots are given by

Ay Ay = —(o, = 02— 1 (6.80)

Employing partial-fraction expansion of each element of matrix (6.79) and then the
inverse Laplace transformation, we obtain

M.H + Nﬁea M.N + Nﬁe

1t Ly e “ Yyt Azt
A — Ay ek —A + A ¢ m A — \&.Nm + —A + \&.Nm
P@) = | T O (6.81)
-} —w; i A Az
et |_| ehit ! erit |_| et
A — A, —A1 + A, 1AL — A, —A 4+ 4
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The state transition matrix (6.81) can now be employed in (6.72) to obtain the
response to any arbitrary initial conditions x, and forcing function Q(z). We now
consider two cases, one of which is the overdamped case and the other, underdamped.

Case 1: Overdamped, { > 1. In this case, both roots of the characteristic
equation are real and negative and are given by (6.80). We now obtain the response to
a step input in the force. Let the initial conditions be zero [i.e., x;(0) =0 and
x,(0) = 0] and F = H, a constant, for t > 0 and F = 0 for t < 0 [i.e., F(z) is a Heavi-
side step function]. The response is obtained from

. 0
x(t) = % Ot — )31 s HA’ (6.82)
[}

m

where ®(?) is given by (6.81). The solution for the state variables can be obtained from
(6.82) and the response of the displacement is

H H 72 — De-on(f — A/C2 — 1
et gmapypr— L TV T e VT =y

x(0) =
+ ¢ N —De={ +T2 =D (6:83)
which is shown in Fig. 6.8.

X

muwn

0

Figure 6.8 Response of a second-order linear system to step input with zero
initial conditions.

Case 2: Underdamped, 0 < { < 1. Here, the roots of the characteristic
equation are complex conjugate and are

Ay Ay = =L@, +jo,n1— (2 (6.84)
Employing these values of 4; and A, in (6.81) for the state transition matrix and equa-

tion (6.82), we can obtain the response to a step change in the force with zero initial
conditions. The response of the displacement is

H . —
XHQV = am + %Nln&i Sin Aea)\~ — ﬁn t — ﬁ\v Amva

where ¥ = tan~! (&1 — {2/—{). This response is shown in Fig. 6.8 for various
values of the damping ratio {. For low values of the damping ratio {, the response is
fast, has large overshoot, and is highly oscillatory before it reaches its equilibrium
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value. For { > 1, there is no overshoot and no oscillations occur. When { = 1, the
damping is called critical. The frequency w; = w,~'1 — {2 is called the damped
natural frequency.

We consider a typical underdamped step response as shown in Fig. 6.9. The
period T of the damped oscillations can be measured directly from the crossing points
of the steady-state value. Relating the damped natural frequency to the period, we
obtain

8}:|mﬁnw rad/s (6.86)

-

“_ < 1+T N—

Figure 6.9 Logarithmic decrement.

At time ¢ the amplitude is y(#,) and at time ¢; + T, the amplitude is y(t; + 7). From
(6.85), it can be seen that

M) __erten
.u\.ANH + N..v - mlﬁEi:JrHv
= gtwT (6.87)

Employing (6.86) in (6.87), we obtain

Wt +T) 1 —

The logarithm of the ratio of amplitudes separated by a period is given the name
of logarithmic decrement. Knowing the left-hand side of (6.88) from experimental
data, we can determine the damping ratio {, and then the natural frequency , can be
determined from (6.86).

Example 6.11

We consider the stationary motion of Example 6.9, where the linearized equations for
small perturbations about a stationary motion are given by (6.68). Let the matrix 4
be given by

0 1 0
[A] = 0 0 1 (6.89)
—6 —11 —6
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1t follows that

s —1 0
GI—A)—=|o s —1 (6.90)
6 11 s+6
s(s + 6) + 11 s+ 6 1
Ah.\>%au:w —6 s(s+6) s 6.91)
—6 s —6 g2

where A is the determinant of the (s — A) matrix and is given by
A= (s+ s+ 2 + 3) (6.92)
The characteristic equation is A = 0 and its roots —1, —2, and —3 are the eigen-
values of matrix A. The state transition matrix @(¢) can be obtained by taking the
inverse Laplace transformation of (6.91) as shown by (6.74) and becomes
Jemt — 372 4+ e~ WQJ — 4e2t + Wmluﬁ Wmlﬁ — e 2 4+ WQIS
D@ =| —3e7" + 6% — 373 —3eTr f Be ¥ — Je73 Lot ;- 2e7H — 37
3t — 12e7% - 9e™¥  JeTt — 167 + LleT3  jeTt —dem¥ + Je¥
(6.93)

This state transition matrix can now be employed in (6.72) in order to obtain the
response of the perturbations to arbitrary initial conditions and forcing functions.

6.6 COORDINATE TRANSFORMATION FOR LINEAR
TIME-INVARIANT SYSTEMS

In the preceding section, the state transition matrix for linear time-invariant
systems has been obtained by employing the Laplace transformation. It should
be noted that other methods are available for the direct solution of (6.73) in
order to obtain the state transition matrix. One method as given by (6.76) is to
express the state transition matrix in the form of a matrix exponential as

@) = el

1]+ (Al (421 + [P S+

oo :N:
= 2[4l (6.94)

However, a disadvantage of obtaining the state transition matrix in this
manner is that a closed form for its elements may not be apparent from (6.94).
But the method may be suitable for machine computation. In fact, for systems
with more than two degrees of freedom, hand calculation of the state transition
matrix becomes very cumbersome and machine computation becomes a neces-
sity. For this reason, in this section, we consider a method that is quite suitable
for the machine computation of the state transition matrix. The method is
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based on coordinate transformation in order to diagonalize the system A

matrix. Another reason for the study of this method is that it will be employed

in Chapter 8 for the normal-mode solution of linear vibration problems.
Given a system described by linear time-invariant state equation

{%} = A{x} + B{Q} 6.95)

with initial conditions {x(0)}, we define new variables {y} by the linear trans-
formation

{x} = P{y} (6.96)

where P is a (n X n) constant matrix and {y} are the new transformed state
variables. Substitution of (6.96) in (6.95) yields

P{y} = AP{y} + B{Q} (6.97)
If P is a nonsingular matrix, we obtain
{3} = P'AP{y} + P'B{Q} (6.98)

with initial conditions {y(0)} = P~'{x(0)}. Letting P"'AP = A, matrix A is said
to be similar to matrix A and the transformation {x} == P{y} is called a similarity
transformation. Here, we seek a nonsingular matrix P such that A is a diagonal
matrix of the form

2, 0 .- 0

0 4, -+ 0
A= . (6.99)

0 0 --- 4,

where 1., ..., 4, are the n eigenvalues of matrix A.

If there exists such a nonsingular matrix P, the coupled equations (6.95)
can be transformed into a set of n uncoupled first-order differential equations
(6.98) in the transformed state variables {y}. The uncoupled state variables {y}
are said to be in the normal or canonic form. The unforced system corresponding
to (6.98) now becomes

Vi A 0 - 0| (2
¥, 0 4, --- 0 Vs
Vn 0 0 -+ A, [\ys

or
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The state transition matrix for this sytem of equations can then be obtained
by inspection as

et 0 Cen 0
0 el .. 0
o0 —| - (6.100)
0 0 . m»:.,

In case the solution {x(¢)} of (6.95) is required, it can be obtained from the
transformation (6.96). The problem now is to determine when such a non-
singular transformation matrix P exits and how it can be obtained. But first,
we shall consider some preliminaries. Given the unforced system {X} = A{x}
corresponding to (6.95), we assume a solution of the form

{x(n} = 7 {x(10)}

Then, we have

{x(0} = A2 {x(t0)} = A{x()} (6.101)
Substituting this result in the differential equation, we get
Ax} = A{x}
or
[Al — Al{x} =0 (6.102)

where L is the identity matrix. Nontrivial solution {x} exists only if det [Al — A] =
0, which is called the characteristic equation of matrix A. The characteristic
polynomial of A is det [AT — A], which is an nth-order polynomial. The n
values 1, A,, ..., A, which are the roots of the characteristic equation, are
called the eigenvalues of matrix A. It is noted that there may be some repeated
roots. An eigenvalue of A is said to be distinct if it is not a repeated root. The
eigenvector corresponding to the eigenvalue A, is obtained from the identity

Afv} = v (6.103)
where at least one element of {v,} is nonzero.

If {v,} is a solution of (6.103), then a{v;} is also a solution for any scalar a.
Hence, only the direction of the eigenvectors can be determined from (6.103)
and their length is arbitrary. An eigenvector may be normalized such that its
length is unity (i.e., || v;|| = 1).

Example 6.12

For the stationary motion of Example 6.9, let the unforced linearized equations be
given by

X4 8 —8 —2](x
Xop =14 —3 —2|<{x, (6.104)
.&w 3 —4 H X3
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The characteristic equation is obtained from
det[A1 —A]=0
or
A—38 8 2
det| —4 A+3 2 =0 (6.105)
—3 4 A—1
Calculation of the determinant (6.105) and factorization yields
A—-—DA—-2)4A—3)=0
The three distinct eigenvalues of A are therefore given by
AL =1, Ay =2, Ay =3

The three eigenvectors are obtained from the solution of (6.103). For 4; = 1, we have

8 —8 —21 (v Vi1
4 -3 =2 va1 ¢ = l<va;
3 —4 1 V31 V31

or
ﬂsﬁm - WGN~ - N\cm: — O
4v,, —4vy; — 204, =0
w\cmH - A.@NH =0
The three equations are not linearly independent, as it can be seen that the first equa-
tion can be obtained by adding the second and third equations. Hence, the length of the
eigenvector is arbitrary. If we choose v;; = 2 arbitrarily, we obtain v,; = 4 and
vy = 3. Hence, we get
4
i} =43
2

The eigenvectors corresponding to the eigenvalues A, = 2 and A; = 3 are obtained in
a similar manner and are

3 2
MGNW = N N M@uw == u
1 1

where v3, and v33; have been chosen arbitrarily as 1. The three eigenvectors of A can
be normalized such that the length of each is unity. The normalized eigenvectors are
given by

4 2

3
_ L 1 1
AT.SW - )\w w > MCNW - )\H' W s mrmw = )\N\ ”

6.6.1 Matrix Diagonalization

We now consider the determination of the nonsingular transformation
matrix P, if it exists, in order to diagonalize the A matrix such that P~'AP = A.
We first state the following two properties of similar matrices:
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1. All similar matrices have the same eigenvalues.

2. All similar matrices have the same determinant.

These properties can be proved by noting that
det [AL — P~'AP] = det [AP"'IP — P~'AP]
= det [P7!(AT — A)P]
— detP ' det (Al — A)detP
= det (AI — A) (6.106)

since det P~ = (det P)~ .

Now, we show that a matrix A can be reduced to a diagonal matrix A by
a similarity transformation if and only if it has a set of n linearly independent
eigenvectors. This can be proved by considering the fact that matrix A must
have the eigenvalues of A appearing along the diagonal. If AP = PA, then by
partitioned matrix multiplication, it follows that A{P} = A{P;}, where {P;]
are the columns of P. Hence, the transformation matrix P has the eigenvectors
of A as its columns:

P = [{v:}{vs] - - {va] (6.107)

and P! exists if and only if its columns are linearly independent. In the follow-
ing, we consider three cases that may arise.

Case 1: Matrix A has distinct eigenvalues. This case occurs in
most dynamic systems. It can be shown that in this case, the eigenvectors of A
are linearly independent; that is, if

@, {v,} + a{v,} + -0 A+ a,{v,} = {0}

for some constant &, then this is possible only if &, = o, = -+ =&, =0.
The proof is by contradiction [6, 7].

Example 6.13

Consider the A matrix of Example 6.12. This matrix has distinct eigenvalues and the
three eigenvectors have been already determined. It can be verified that these eigen-
vectors are linearly independent. The transformation matrix that we seek is given by

4 4 2
V29 /1 /6
3 2 1
V29 Ji& /6
2 1 .1
/29 /14 6

1t can be checked by matrix multiplication that

P = (6.108)

N
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24 3 2! 4 3 2 ]
L T PYA L IRV S
- 3 2 1 3 2 1
PIAP=| — = -3 2| = = —
29 14 /6 M. M M 29 14 ./6
2 1 1 2 11
. l)\No A/ 14 6 l)\Nlo A/ 14 6
E _ 100
=10 2 0
N 0 0 3

In the transformed state variables {y], the differential equations are uncoupled
. and the unforced system is described by

Vi HN_.\S, i=1,2,3

where A; are the three distinct eigenvalues of A that appear along the diagonal of the
A matrix. The state transition matrix for the normal variables is obtained by inspec-

tion as
e 0 07
®)=|0 e¥ 0 (6.109)
__to 0 e¥

After the solution of the normal state variables {y(r)} has been obtained, the
solution of the original state variables is obtained as {x(¢)} = P{y(¢)}, where P is given
by (6.108).

Case 2: Matrix A does not have distinct eigenvalues. As stated
earlier, any (n X n) matrix can be diagonalized if and only if it has a set of
linearly independent eigenvectors. Hence, in this case the requirement for
diagonalization is that for each multiple eigenvalue A, of multiplicity m, there
must exist m; linearly independent eigenvectors corresponding to A;. If this
condition is not satisfied, a matrix that does not have distinct eigenvalues is
called degenerate and cannot be diagonalized.

Example 6.14
Consider the matrix A given by

oo
>H HHH Am.:ov
—1 0 0
The characteristic equation is obtained as
det[AI —A]=AA — 12 =0

Hence, the three eigenvalues are 0, 1, and 1. The eigenvector corresponding to zero
eigenvalue is obtained from

1 0 0 V11 V11
111 v21 ¢ = (0) 21
-1 0 0O V31 V31
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0

{va} = 1
—1

where v,; has been chosen arbitrarily as 1. For 4 = 1, the eigenvector satisfies

1 O O V12 V12 \
1 1 1 |ugpp = 1)<v2z Q\
-1 0 O (EY) V32 \ ﬂ

0=0
SN.TENUO / hl\s\ W\\
N,

or

V12 T V32 & 0

Therefore, all eigenvectors belonging to unity eigenvalue can be expressed as

12 C1 0
V220 = 0¢+<c
V32 —Cq 0

where ¢; and c, are any nonzero constants. Hence, two linearly independent vectors
can be found for the eigenvalue 1, which has a multiplicity of 2, as

1 0
{v,} = 0 and {va} =<1
—1 0
The nonsingular transformation matrix is thus obtained as
0 1 0
P= 1 0 1 6.111)
-1 —1 0
It can be easily verified that
r—1 0 —1 1 00 0 1 0
PT1AP = 10 0 1 11 1 01
. 11 1][—-1 0 0j|—-1 —1 0
0 0 0
=]0 1 O (6.112)
0 0 1

It has been stated previously that if for each multiple eigenvalue 4; of multiplicity
my, there do not exist m; linearly independent eigenvectors corresponding to 4;, then
the matrix cannot be diagonalized since in this case the transformation matrix P defined
by (6.107) would be singular. Here, the simplest form to which matrix A can be reduced
is called the Jordan normal form. A Jordan normal matrix J has the following proper-
ties:

1. All elements below the principal diagonal are zero.
2. The diagonal elements of matrix J are the eigenvalues of A.
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3. All elements above the principal diagonal are zero except possibly those ele-
ments which are adjacent to two equal diagonal elements, depending on the
degeneracy of matrix A.

In fact if # X n matrix A has only r linearly independent eigenvectors, the
Jordan normal matrix has » — r ones above the principal diagonal.

Example 6.15
Consider a matrix A given by

A — (6.113)

A O W
L
- o O

The characteristic equation is obtained as
det[Al —A]l=A—DA —1DA -5 =0 (6.114)

The three eigenvalues are 4, =1, A, = 1, and A; = 5. For the multiple eigenvalue
Ay = A, = 1, the corresponding eigenvector is obtained from the solution of

5 40 V11 V11
010 Va1 = Cv V21
—4 4 1 V31 Vi1

or
do11 +4vyy =0
0=0
—4vy; +4uy; =0

From the foregoing equations, we obtain only one linearly independent eigenvector as

V11 0
V21 == 0
CEY [4

where ¢ is any nonzero constant. For the eigenvalue 1; = 5, the corresponding eigen-
vector is obtained from

[Al{vs} = 5{vs}
or
qv,; =0
—4v,; =0
—4py3 - vas — vz =0

This eigenvector is thus obtained as

V13 —b
V237 — 0
Vi3 b
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where b is any nonzero constant. This matrix A has a degeneracy of 1 and it follows
that the Jordan normal form is given by

1 10
[J1=/0 1 O (6.115)
0 0 5
Example 6.16
We now consider another matrix A, where
-1 2 —1
A= 0 —1 0 (6.116)
0 0 —1
The characteristic equation becomes
det[AIl —Al=A+DAF+-DA+1)=0
Here, the eigenvalue —1 is repeated thrice (i.e., A; = A, = 4; = —1). The eigenvector
corresponding to this multiple eigenvalue can be obtained from
—1 2 —1|{vs V11
0 —1 0 |<{vy ¢ = (—1){vy (6.117)
O O _— ~¥ V31 Vi1
or
2v31 —v31 =0
0 =
0=0
Hence, all eigenvalues belonging to eigenvalue —1 can be expressed as
V11 C 0
V21 = O + mw
31 0 N@
Two linearly independent eigenvectors can be found for this eigenvalue as
1 0
0 and 1
0 2
The degeneracy of matrix A is 1 and its Jordan normal form is given by
—1 1 0
[/]1= 0 —1 0 (6.118)
0 0 —1

We have not discussed here the techniques of determining the transformation
matrix that will convert a matrix to its Jordan normal form and the reader may consult
several references [6, 7.
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Case 3: Matrix A is real and symmetric. Such a matrix can
always be diagonalized, even if it has multiple eigenvalues, by using an orthog-
onal transformation matrix. The eigenvalues of a square, real, and symmetric
matrix are always real. It should be noted that this case was encountered in
Chapter 4 in connection with the (3 X 3) moments of inertia matrix. Hence,
the principal directions and principal moments of inertia can always be found.
In the more general case, we seek an orthogonal transformation matrix T that
will diagonalize an (#» X n) matrix A such that T"'AT = A. It is recalled that if
T is an orthogonal matrix, then T~! = T’, where T’ denotes the transpose of T.

We seek an orthogonal transformation matrix T such that T™'AT =
T’AT = A. It is noted again that in order for such a transformation matrix T
to exist, matrix A must be symmetric since if T~'AT = A with T™! = T, we
get

A =TAT = A’ (6.119)

Any two vectors {#,} and {v,} are said to be orthogonal if

Ao (o) = oo} =0,  i#j

It has been mentioned earlier that the eigenvalues of a real symmetric
matrix are real and for such a matrix, it can be shown that eigenvectors corre-
sponding to different eigenvalues are mutually orthogonal as follows. Consider

[Al{v;} = v}
[4l{v;} = Adv;}
Multiplying the first equation by {¢;}’ and the second by {#,}’, it follows that
{0y [4lo — (d Al{v ) = (A — A} {vd
=0 (6.120)
The last equality follows from the fact that A = A’. Now, since 4; = 4,,
we get {v;}'{v;} = 0. Even if the eigenvalues are not distinct, a set of n orthogonal

eigenvectors can be found for (n X n) real, symmetric matrix. The proof of this
statement is by induction and is given in several references [5-7].

Example 6.17

Consider the following real, symmetric matrix A given by

2 1 -1
A= 1 2 -1 (6.121)
-1 -1 2

The characteristic equation yields det [AI — A] = (A — 1)2(4 — 4) = 0 with
eigenvalues A, = 1, 1, = 1, and A; = 4. The eigenvector corresponding to the eigen-
value 1 is obtained from the solution of

[Al{r,} = (D{v]

Sec. 6.6 Coordinate Transformation for Linear Time-Invariant Systems 193

or
V11 F vy —ws =0
V11 vy —v3 =0
—v11 —vy t Uy =
Hence, only one equation is available in three unknowns. Arbitrarily choosing v4; = 0
and v,; = 1, we obtain v3; = 1. Hence,
0
i} =41
1

The second eigenvector {v,} corresponding to the repeated eigenvalue 1 is
obtained such that it is orthogonal to {v,}:

foid, {2} =0 (6.122)
and satisfies the equation

[4l{vz} = (Dvs} (6.123)
or

Vig F v — 03, =0

The orthogonality condition (6.122) yields

v32 + 232 =0 (6.124)
Now, (6.123) and (6.124) are two equations in three unknowns. Arbitrarily choosing
vy, = 2, we obtain v,, = —1 and v;, = 1. Hence,
2
{2} =q—1
1

The third eigenvector corresponding to the eigenvalue A = 4 is obtained from
the solution of the equation

[Al{vs} = 4{vs}
These equations are described by
2013 + w23 — w33 =0
viz3 — 2v23 — w33 =0
—vy3 — w3 — 2033 =10
There are only two independent equations in three unknowns, as the first equation can

be obtained by multiplying the second equation by —1 and adding it to the third.
Arbitrarily choosing vy3 = 1, we obtain

1

?& = 1
—1
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Normalizing the three eigenvectors such that the length of each is unity, we obtain the
orthonormal transformation matrix as

1

V3
1 (6.125)

3
1

3

ik -
-5l

It can be verified that T-! = T’ and that

1 00
TIAT={0 1 O (6.126)
0 0 4
As mentioned earlier, for systems with large degrees of freedom, a com-
puter solution becomes a necessity even for linear time-invariant equations of
motion. Different digital computer methods for direct integration of the equa-
tions of motion are discussed in the following chapter. The techniques discussed
in this section may also be used to obtain a computer solution for a system of
linear time-invariant equations of motion. Thismethod involves first determining
the eigenvalues of matrix A by using one of the standard computer programs [4].
If matrix A has distinct eigenvalues, as would be the case in practice in most
applications, the state transition matrix for the normal state variables is then
easily obtained as given by (6.100). After determining the transformation matrix
P, and referring to the solution (6.72), it can be seen that the solution of the
normal state equation (6.98) is given by

(0} = OO} + [ Bt — )PBQU)} i’

The convolution integral on the right-hand side of (6.127) can be approximated
by convolution summation or it can be evaluated by using a method of numerical
integration. The solution of the original state equation is obtained as

{x(0)} = P{y()}
— PO() P {x(0)} + b PO — )P IB{Q()} dt’

(6.127)

(6.128)

6.7 SUMMARY

In this chapter the equations of motion have been expressed as a set of first-order
differential equations in the state-variable form by choosing the generalized
coordinates and generalized velocities or, alternatively, the generalized coordi-
nates and generalized momenta as the state variables. A theorem is stated and
proved concerning the existence and uniqueness of the solution. A similar proof
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of this theorem is given by Davis [1]. An alternative proof using the contraction-
mapping fixed-point theorem is given by Hsu and Meyer [2] and by Vidyasagar
[3]. Since the solutions of most nonlinear differential equations are obtained by
computer simulation as discussed in the next chapter, the existence and unique-
ness theorem is useful to verify whether the solution that has been obtained is
unique or possibly there are other solutions to be considered. It is noted that a
nonunique mode of behavior is not uncommon for nonlinear dynamic systems.

Since the equations of motion are in general nonlinear, linearized equa-
tions are considered as perturbations from an equilibrium state or from a
nominal motion when the nonlinearities are analytic functions of their argu-
ments. It is seen that linear time-invariant systems always satisfy the sufficient
conditions of the existence and uniqueness theorem. Hence, in such cases, it is
not required to verify the uniqueness of the solution. The dynamic response of
linear equations to initial conditions and forcing functions has been obtained
by using the state transition matrix and convolution integral.

In the case of linear time-invariant systems, the state transition matrix
has been obtained by using the Laplace transformation. The last section covers
a method that is suitable for computer solution of linear time-invariant systems
when the degrees of freedom are large. In this method, the state transition
matrix is obtained by matrix diagonalization and similarity transformation.
The eigenvalues and eigenvectors of the system matrix are required and several
computer programs [4] are available for this purpose. A good discussion on
matrix analysis and linear algebra is given by Bellman [5). Further results
concerning the state transition matrix and matrix diagonalization may be
found in references [6] and [7].

PROBLEMS

6.1. Investigate the existence and uniqueness of the solution of the following systems.
State whether local or global conditions are satisfied and mention singular points
or regions, if any.

(@) mb20 + cf -+ mgb sin § = a sin wt

3
(b) mx + csgnx + »Ax lxﬂv = g sin Wt
(¢) The system defined by (6.35)

6.2. The equation % = x2 does not obey a global Lipschitz condition. Show by
direct integration that for this system it is possible for x(¢) to go to infinity as ¢
approaches some finite time ¢, (i.e., it has a finite escape time).

6.3. Let the linearized equation be described by the Euler differential equation
12% +tx +x=0

with initial conditions x(#,) and %(#,) at initial time #,. By choosing x and x as
state variables, obtain the state transition matrix d(t, t,) and show that @(¢, ") 5=

o — ).
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6.4. Let the matrix [4(¢)] be given by [4(#)] = g(¢+)[C], where [C] is a constant matrix
and g(¢) is a scalar function of time. Show that [A(¢,)][4(#2)] = [A(#2)1A(¢,)] and
that for this special case, the state transition matrix is given by

®(t, o) = exp ﬁ._.““ A(t) &NQ

6.5. A projectile of unit mass is fired with initial speed v, at an elevation angle ®. A
gravity acceleration g acts on the projectile and air resistance is neglected. The
equations of motion are given by

=0

y=—z
with initial conditions x(0) = x;, (0) = y,, X(0) = v¢ cos &, and y(0) = v¢ sin &.
Obtain the state transition matrix by employing (6.75) and the range of the pro-
jectile.

6.6. The equations of motion for the system shown in Fig. P6.6 are given by

myiy cos o+ 3my¥, = mygsina
(my + my) %, + myi, cos @ + ¢xy = F(t)

By choosing x;, x,, X;, and X, as state variables and employing (6.75),
obtain the state transition matrix @(¢).

Figure P6.6

6.7. The linearized perturbations in the Euler equations of motion about a stationary
motion are described by

%, 0 0 0(x
fp=]1 —1 0{x,
P 0 —2 —2|lx,

Obtain the state transition matrix ¢p(¢) by employing equation (6.75).

6.8. Reduce the state variables of Problem 6.7 to the Jordan normal form by employ-
ing the similarity transformation of (6.96). Obtain the state transition matrix for
the state variables {x} from the equation

o) = Pd,(H)P!
where @,(¢) is the state transition matrix for the Jordan normal state variables.
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DYNAMIC RESPONSE
BY NUMERICAL METHODS

7.1 INTRODUCTION

Many numerical integration methods are used for the approximate solution of
equations of motion or sets of such equations. A complete coverage of numerical
integration methods is beyond the scope of this book, and the reader is referred
to many available textbooks on the subject. In this chapter we discuss several
widely used step-by-step numerical integration schemes for linear and nonlinear
dynamic analysis. A brief description of these methods is presented and their
application is illustrated. In addition, accuracy, stability, and efficiency of the
methods are examined by comparing the results for a sample example.

7.2 FORMULATION OF PROBLEM

It has been shown in the previous chapters that a standard form, in which the
equations of motion for a general nonlinear time-varying parameter dynamic
system can be expressed, is the state-variable form:

mXWHm.\,ANT...vXkV Q: an...umiu nvw A‘NHV

where x,, . . ., x, are the components of state-variable vector {x} and {Q}isa
vector of generalized forces. However, in order to decrease the computation
time of the digital computer simulation, in many cases it is advantageous to
express the equations of motion in the form

[mi @} + [eig} -+ [Klig} = {Q(D} (7.2)
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Equation (7.2) represents a set of » coupled second-order differential equations
of motion for the system. Here [m], [c], and [k] are the mass, damping, and stiff-
ness matrices of the system, and {Q(t)} is the external force vector. The vari-
ables {4}, {¢}, and {g} correspond to acceleration, velocity, and displacement
vectors of the system. In the case of a linear dynamic system with time-invariant
parameters, matrices [m], [¢], and [k] are constants and remain unchanged
during integration procedure.

For the solution of linear time-invariant equations of motion. one can
employ either the normal-mode superposition method as discussed in Chapter 6
or the direct numerical integration methods in case the dimension n is very
large. However, for the solution of nonlinear equations of motion, the latter
procedure is generally mandatory as the matrices [n1], [c], and [k] vary with
time* and are required to be modified at each integration step. When certain
type of nonlinearities such as hysteresis and Coulomb friction are encountered
in the equations of motion, some care is required in expressing the equations of
motion in the form of (7.2). This formulation is clarified in Example 7.1.

Example 7.1

A block of mass m; is suspended by a linear spring of stiffness & and is constrained to
move on a straight bar 4B with Coulomb friction. A mass m, is suspended from mass
m; by a rigid rod of length @ and is free to move about the pivot O; with viscous fric-
tion as shown in Fig. 7.1.

— F(t)

m
2
Figure 7.1 A system of two masses.

The equations of motion of this system were obtained in Chapter 3 by the direct
application of Newton’s laws, and in Chapter 5 by the application of Lagrange equa-
tions. We recall that these equations are given by

(my + my)i + myal cos @ — myab?sin@ + uNsgnx + kx = F (7.3)

myai cos 0 + myaf + 6 + mygasinf =0 7.9
where in (7.3), the normal force N between the mass #; and rod AB is given by
N=mg+ mya? cos @ + g cos? @ — m,x sin @ cos @ (7.5)

*In nonlinear constant parameter systéms, these matrices consist of constant parameters
and functions of {g} and {¢} as elements. As {g} and {4} are functions of time, the matrices must
be updated to their current values at every integration step.
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In Chapter 5 these equations were expressed as a set of first-order equations in
the state-variable form by employing the Hamilton’s canonic equations, where the
generalized momenta are described, respectively, by

P = M‘M = (my + m)x + Emam cos @
and s
L . A
Py = e maaX cos 0 + mya20
The state-variable vector {x} has been defined as
X
0
{x}=
D1
P2

and the equations of motion expressed as
{(x} = {f(x1, X2, X3, X4, F()} (7.6)

Equation (7.6) is in the standard form of (7.1). In order to express the o@:mmocm in the
form of (7.2), we substitute for N from (7.5) in (7.3) and obtain the equations of

motion as
(m; + my)i + myal) cos 6 — myab? sin @ + kx
+ u(mig + myab? cos @ + myg cos? @ — myi sin 0 cos Oysgnx = F() (1.7
myak cos 8 + mya?f + cd - mygasinf =0 (7.8)
Equations (7.7) and (7.8) are now expressed as

ﬁ: + m, — mysin @ cos @ sgn x  mya cos %Q Axv

maacos @ mya? ]
0 6 (sin @ + cos @ sgn %) % k 0 x
—mya : K
o ¢ e+ maga 50 H
_ A@JS — pg(my + my) sgn &W 71.9)
0

In the foregoing equation, the [m], [¢], and [£] matrices are not constant but are con-
sidered as time varying and are updated at each integration step. Om course, care 1S
required to ensure that * does not change sign during an Eﬂomnm:ﬁwc step At. The
matrices are not uniquely defined. For example, in the [k] matrix, . the element
msga(sin 8/68) could be replaced by zero and equivalently a term myga Sin 0 added to
the second row of the right-hand-side forcing vector.

In a direct integration method the equations in (7.2) are Eamwmaa. succes-
sively using a step-by-step numerical integration procedure. 12:,” direct _wamg-
tion method implies that no transformation of the equations into a different

form is carried out prior to integration. In direct integration methods, time
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derivatives are generally approximated using difference formulas involving one
or more increments of time. There are two basic approaches used in the direct
integration method: (1) explicit and (2) implicit. In an explicit formulation the
response quantities are expressed in terms of previously determined values of
displacement, velocity, or acceleration; whereas in an implicit formulation, the
temporal difference equations are combined with the equations of motion, and
displacements are calculated directly by solving these equations.

There are also certain semi-implicit methods which have been used to
solve the partial differential equations encountered in thermodynamic and fluid
dynamic problems. However, we do not consider them here because they offer
no real advantage either over the implicit or explicit method for the ordinary
differential equations of dynamic systems.

Three algorithms for dynamic analysis by explicit methods are presented
here. They are the central difference predictor, two-cycle iteration with trape-
zoidal rule, and the fourth-order Runge-Kutta method. Four algorithms based
on implicit procedures—the Newmark beta, Wilson theta, Houbolt, and Park
stiffly stable methods—are also discussed. Algorithms for these solution tech-
niques are implemented into computer programs.

7.3 EXPLICIT METHODS

7.3.1 Central Difference Predictor

We consider a displacement-time history curve as shown in Fig. 7.2. The
velocity in the middle of the time interval At is given by

G = Tt (7.10)
Figure 7.2 Displacement versus time.
The acceleration g, is obtained as
5o G172 — Gio12
i - (7.11)
Substituting for ¢;,,» and §,_, ,, in (7.11), we obtain
. 1
9 = DNNAQ:_ — 29, + q;-1) (7.12)
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The difference formulas in the central difference predictor method will
then be

4} = yol(dad — (@-arl] (7.13)

(@) = pallgnad — 200} + {g-ar] (7.14)

Substituting the relations for {¢,} and {¢,} from (7.13) and (7.14), respectively,
into (7.2) we obtain

(gl + 5 g71€1) (e

=10} (11— galri)ad — (zalmd — ygd)iaad (19
Equation (7.15) can be rewritten as
Tﬂ&m&lb@ - mmb A\N—mv
where the effective mass matrix [7] and effective force vector {0} are
) = aalm] + 3 lel (7.17a)
(01 =10} ~ (14— malm)ia} — (grlml — glel)iaad 17D

Displacements {g,. »,} at the time step 7 - At can be calculated by solving
(7.16), whereas the velocities and accelerations at time ¢ are obtained by sub-
stituting these values of {g,, 4.} in (7.13) and (7.14). It can be observed that in the
central difference predictor method, calculation of {g,.,} involves {g.} and
{g._a:}. Thus, to obtain the solution at time At, a special starting procedure is
needed.

The local truncation error of the difference formulas used in the method
is of the order Az, The time step for linear dynamic analysis is limited by the
highest frequency of the discrete system (i.c., Wm.5) such that

2 (7.18)

At <
SBNN

When At does not satisfy the inequality (7.18), a spuricus growth of the discrete
solution occurs. This is known as a numerical instability.

For the linear dynamic analysis, (7.18) is the necessary and sufficient con-
dition for the stability of the central difference predictor method. However,
there is considerable empirical evidence that this equation is equally valid for
stability in the nonlinear dynamic problems provided that Ar is reduced to
account for the highest frequency during the computations.
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7.3.2 Two-Cycle Iteration with Trapezoidal Rule

The incremental form of the equations of motion at any time ¢ is expressed
as

[ml{Ag} = {AQ} — [kI{Aq} — [c}{Aq} (7.19)
In the first iteration cycle, increments in velocities and displacements are

estimated using the following formulas:
For first time step:

{Ag,} = At{g,_ar) (7.202)
For other time step:
mDQL =2 DNE.TP@ - mb&...lb@ AQNOGV
m&@ = m&...l?@ + mDQL AQNOOV
(Ag) = sl + 10D) (7.20d)

Increments in accelerations are evaluated, by substituting the relations for

{Aq,} and {Agq,} from (7.20a) or (7.20b) and (7.20d), respectively, into (7.19).
These are then used to estimate the accelerations at time ¢ as

{Ag} = [m]7'({AQ} — [kl{Aq} — [c]{AgD (7.21)

MQL - m%..lb@ + mDQ..L A\NNNV

In the second iteration cycle, increments in the velocities and accelera-
tions are refined as follows:

(Mg} — S ((G-ud + @D (7.232)
MQL - MQ.TDL + mDQL AQNva
(Ag) = S({dad + 4D (7.23¢)

. Finally, the relations for {A¢,} and {Agq,} in (7.23a) and (7.23c) are sub-
stituted into (7.21) to calculate the new increments in the accelerations. These
are then used in (7.22) to evaluate accelerations at time ¢.

7.3.3 Runge-Kutta Methods

In this method, the system equations are replaced in state-variables form;
that is, both displacements and velocities are treated as unknowns defined by

_ 4
{x} = @ (7.24)
Equation (7.2) is now rewritten as
{g} = —Im]"'[kl{q} — [m]'[c){g} + [m]*{Q®} (7.25)
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Using the identity

{g} = {4} (7.26)
equations (7.25) and (7.26) are written as
_ g ﬁ [0] _ (7] g {g} . {0} 797
S\ e | @@l erew O
or
() = [E)x} + (Q*(0)) (7.27b)
or
{x} = {/@ x)} (7.27¢)

In the Runge-Kutta method, an approximation to {x,.,,} is obtained
from {x,} in such a way that the power series expansion of the approximation
coincides, up to terms of a certain order (Af)¥ in the time interval At, with the
actual Taylor series expansion of (t + Ar) in powers of At. However, the method
is self-starting and also has the advantage that no initial values are needed
beyond the prescribed values.

We first consider a scalar first-order differential equation described by

% = f(x(1), 1) (7.28)
and later generalize to a set of first-order equations. It is assumed that condi-
tions of Theorem 6.1 are satisfied about the point (x(?), f) such that a solution of

(7.28) exists and is unique in the interval of time At about that point. A Taylor
series expansion of the solution yields

ARVN

*(t + A = xeea — x(0) 1+ Ars() + S50y + G50y - (1.29)

Since from (7.28), x = f(x(¢), f) = f and further differentiation yields

sy =P+ P L1 1 i,

Similarly,

() = fuo + U n + P ew + Ll TS

Substituting these results in (7.29), we obtain

*(t + A) = x(0) + A+ BE L+ 1)

+ ADQNVJ\: 4 2ffin + [ LS I A (7.30)

It has been also assumed in the foregoing that the higher derivatives and partial
derivatives exist at points required. The simplest of the Runge-Kutta methods
is the first-order method, also known as Euler method, which retains only the
first two terms of the Taylor series expansion (7.30). Hence, in the Euler method,
the approximation to the solution is given by

x(t + At = x(1) + Atf(x(1), 1) (7.31)
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The results are reasonably accurate only for the first few time steps with
small At; after that the approximation usually diverges from the actual solution.
The general idea behind the higher-order Runge-Kutta methods is to retain the
higher-order terms in (7.30). However, the method does not require evaluation
of the derivatives of the function f. Instead, approximations are obtained at the
expense of several evaluations of the function f at each time step.

As discussed in Chapter 6, the solution can also be written in the integral

form
t+AL

x(t + A = x(£) + % fx(1), t) d (7.32)
Application of the mean value theorem of integral calculus to (7.32) yields

x(t + A = x(1) + Atf(x(t + a A1), t + a A?) (7.33)

for some o such that 0 << o << 1. The problem now is to avoid the evaluation of
explicit higher derivatives required in (7.30) and in the expansion of (7.33).

Second-order Runge—Kutta. Here, o is chosen so that the Taylor
series expansion of (7.33) agrees exactly with (7.30) up to terms of order (Af)?.
Letting x(t + a Af) = x(#) + B At + -+ in (7.33), the Taylor series expansion
of (7.33) up to orders of (At)? yields

x(t + A = x() + Atf + a(AD?f, + B(ADZS, (7.34)
Comparing (7.34) and (7.30) when only terms of order (Af)? are retained in
(7.30), we obtain
a=4 and B=4f
Hence, in the second-order Runge-Kutta method, the approximation to the
solution is given by

x(t + M) = x(0) + At f(x(0) + SLreo, 0, + %v (1.35)

Fourth-order Runge—Kutta method. To obtain good accuracy,
the commonly employed method is the fourth-order Runge-Kutta method.
Again, to avoid the evaluation of explicit higher-order derivatives, we set

ky = f(t, x(1))
ky =f( + a, At, x + Bk, A1)
ky; =f(t + a; At, x + Pk, At + r3k, At) (7.36)
ky, =St + a, At, x + Bk, At + rky At + 8,k; A1)
x(t + At = x(O) + Atuky + poky + paks + puky)

The problem now is to determine the 13 parameters in (7.36)—3 a’s, 3 f’s,
2 .\mu 44, and 4 u’s—such that the Taylor series expansion of (7.36) agrees exactly
with (7.30) up to terms of order (Af)*. After expanding the k’s in Taylor series
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up to terms of order (A¢)*, substituting the result in (7.36), and comparing this
expansion with (7.30) term by term, one obtains eight equations in 13 unknowns.
Three further equations are obtained from the fact that the method must be
independent of the function f. We omit the details here and the interested reader
is referred to reference [14]. Hence, two parameters may be chosen arbitrarily.
The choice of &, = 1 and §, = | leads to the commonly employed results

\GH “.\AAN..X.V
»NH\AE%L;F%V

At At
ks H\AN + 55+ ky Mv (1.37)
Ky = f(t + At x + Ky Af)
Xt + A1) — x(f) + WQ: 12k, + 2k, 4 k)

Now, in order to generalize the fourth-order Runge-Kutta method to a set of
first-order equations

X =filxs oo ., X 1); that is, {x} = {f(x, D}

we define the vector {k,} = {f(z, x)}. The vectors {k,}, {k;}, and {k,} are defined
similarly. In vector form, (7.37) is written as

{x(t + A} = {x(0} + %%ﬁ + 2{ka} £ 2{ks} + (kD) (7.38)

The first- and second-order Runge-Kutta methods are hardly ever
employed because, as mentioned earlier, the results that they yield are not very
accurate. Hence, if a Runge-Kutta method is chosen as the integration tech-
nique, it is usually the fourth-order method.

The truncation error e, for the fourth-order Runge-Kutta method is of
the form

e, = k(A?)?® (7.39)

where k depends on f(z, x) and its higher-order partial derivatives.

Since the fourth-order Runge-Kutta method is an explicit method, the
maximum time step is usually governed by stability considerations. The method
can be considered as an inherently stable method, since the change in time step
can be easily implemented at any stage of the advance of calculations. However,
the method generates an artificial damping which unduly suppresses the amplitude
of the response. The principal disadvantage consists in the fact that each for-
ward step requires several evaluations of the functions. This increases consid-
erably the cost of computation. Moreover, no simple expression is available to
calculate precisely the truncation error for the Runge-Kutta method. This is
also a source of inconvenience.
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7.4 IMPLICIT METHODS

7.4.1 Houbolt Method

This method is based on a third-order interpolation of displacements. In
the Houbolt integration scheme, multistep implicit formulas for velocity and
acceleration are derived in terms of displacements using backward differences,
as shown in the following with reference to Fig. 7.3.

. 2, 3 .
9= Gorar — AtGe,a + D% Grrar — Dﬂu q:iae (7.40a)
. 2, 3 .
Gi—ar = evar — AN DNVQ,@?_ + A%v Girar — AN#BV qivar AQAOUV

. 2. 3 ..
Qalnba = Q,Zw?‘ - Aw >~v9‘+>~ IT A%V Q~+b~ - Aw#?v Q.Irb.. A\N.A.OOV

— L\.J

942 at At at 9 Apint

—

01 ot | ot

Figure 7.3 Displacement versus time.

Solving equations (7.40a), (7.40b), and (7.40c) for §,,,, and g+ a; In terms of
Qe+ 91> Gi—ar» aNd g,_24,, We obtain the following formulas:

Gevar = MNINANQIE - MQ,_ + A.QTE - Qaln?,v Aﬂ#wm.v

. 1
Gerar = @|>NA:QIE — 18¢, 4+ 9¢,_a; — 2G,_24a:) (7.41b)

The difference formulas in the Houbolt algorithms for a vector equation
are then given by

(Gorad = 3220 ad — 50 + 4drad — (guorad] (7.42)

m%?r?‘w = &:ngjr?‘w - ~wm9‘w. IT OMQT.DL - Nm@ln?‘”ﬁ Aﬂva
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Substituting the relations for {§, .} and {¢,,,} from (7.42) and (7.43), respec-
tively, into (7.2), we obtain

() 4 ggglel + k) (gveadd = @1 + (gl + 211}l
— (gl + 3 ogglel) s

+ (a4 5 ll)igmad  (749)

Equation (7.44) is rewritten as
Tﬂ&m@l?w = m@u??w A\NAMV

where the effective mass matrix [/] and effective force vector {Q,. ,} are

D7) = pglm] + e+ [K] (7.46a)

(Gerad = Qo) + A% (] + . Lel) a2

- A?NE T3 B q_v? ad + A 2ol + EX@-E; (7.46b)

Displacements {g,. .} at the time step ¢ + At can be calculated by solving
(7.45), whereas the velocities and accelerations at time ¢ + At are obtained by
substituting for {g,,,} in (7.41a) and (7.41Db).

It can be noticed that in the Houbolt method, calculation of {g,,.,} in-
volves displacements at ¢, t — At, and t — 2 As. Therefore, a special starting
procedure is required to obtain solution at time At and 2At. This makes the
method non-self-starting. The method also requires a large computer storage
to store displacements for two previous time steps.

7.4.2 Wilson Theta Method

In the Wilson theta method, it is assumed that the acceleration varies
linearly over an increment of time  A¢, where § > 1.0 as shown in Fig. 7.4,
whereas the properties of the dynamic system remain constant during this

m?®>~

gat

Figure 7.4 Acceleration versus time.
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interval, If 7 is the increase in time between t and ¢ + @ Az (i.e., 0 << 7 << 6 Ap),
then for the time interval ¢ to ¢ 4+ 6 Ay, it is assumed that

Q..»+« = %» + WGHNAQTQ?‘ - Q..»v Aﬂhﬂv
Integrating (7.47), we obtain the following expressions for ¢,,, and g, ,:

Gere = 4. + 47T + 20 Dwﬁﬁlm? —qy) Aﬂhmmv

Geve =4, + Q\n + Q\n + m% DN AQ“+m>“ - Qwv Aﬂhmdv

Substituting T = 8 Atz into (7.48a) and (7.48b), we obtain the following expres-
sions at time ¢ + 8 At:

Geronr = g; + EA&‘ + Giroar) (7.49a)

62 ?N

Gevoar — 4, + 0 Atg, -+ ——(Grroar 24,) Aﬂ.hwdv

Equations (7.49a) and (7.49b) are solved for §,,¢a; and 4, ,4a; in terms of ¢,, ¢4,
as

Govose — g pgs rvoss — 99 — g & — 24, (7.50a)

Gevose = g Grvons — 9) — 24, — 24 (7.500)

The difference formulas in the Wilson theta algorithm are then given by
{Gooad — grogaenend — 0D — g ldd — 2@ (.5

(Goroad = gog@resd — () — 263 — 240 (7.52)

We consider equation (7.2) at time ¢ -+ 8 At to obtain solution for the
displacements, velocities, and accelerations at time ¢ -+ At. Since the accelera-
tions vary linearly, a linearly projected force vector is used such that

Tﬁ&m@.?é?w + _”Q_MQ.,%Q?W + Tﬂ_mﬂlm?w - m@?&?w Aﬂmwv
where

m@?&?w = m@»w + %Ammibww - mm“wv

m.:vmac::m the relations for {§,,44,} and {g;, ¢} from (7.51) and (7.52), respec-
tively, into Q.mwv, we obtain

(grmzzt] -+ gogled + K1) (grvond = (Qend -+ (g galmd -+ gglel) e

0 At

+ AQE + NEV § + ANE + Ev 4y 59
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Equation (7.54) is rewritten as

Tm”_mmlmbh = m@llmbh A\NMMV
where the effective mass matrix [/] and effective force vector {Q,,a,} are given
by

] = oSzl + g le] + [&] (7.563)

m@.?&?w = m@?&?w L7 A%T&”_ AT ww_”m”_v MQL

+ (gl + 2el)iad + (2 + 221 1a (7.56b)

The solution (7.55) yields {g,,,4,}, Which is then substituted in the following
expressions to obtain accelerations, velocities, and displacements at ¢t 4 At:

MQ:DL - %QQ?&EW - MQLV - QNQDN MQL + A~ - wlv MQ..L Aﬂm\wmv

{ovad = () + 5 Wdnd + @D (7.57b)
(@road = {93 + M3} + B0 00 + 200D (7.57¢)

The overall method is proven to be unconditionally stable for values of
0 > 1.37 for linear dynamic systems, but a value of 1.5 is often used for non-
linear problems. An anomaly of this method is that equilibrium is never satisfied
at time ¢t + At

7.4.3 Newmark Beta Method

The Newmark integration method can be treated as an extension of the
linear integration scheme. The method uses parameters « and f§, which can be
changed to suit the requirements of the problem at hand. The equations used
are given by

Grrae = G, + ?_ — g, + RQ...,+E”_ At A‘wamv
Gerac = G + 4A, + [(5 — P4 + Bdiral(A2)? (7.58b)

where o and f§ are parameters which are determined to obtain integration accu-
racy and stability. The net effect of these parameters is to change the form of the
variation of an acceleration during the time interval Az. By letting & = 4 and
B = 0, the acceleration is constant and equal to §, during each time interval Atz.
If @ = 4 and f = {, the acceleration is constant from the beginning as ¢, and
then changes to §,, ., at the middle of the time interval Az. With & = } and
B =1, (7.58a) and (7.58b) imply that the acceleration varies linearly from g,
to §,,a,, whereas values & = 4 and f = } correspond to the assumption that
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acceleration remains constant at an average value of (4, + g, a)/2. The
difference formulas in the Newmark beta algorithm are

(s = g gaansd — (8D — gheta) — (35 — 1)@ (7.59)

losd = grlaead —{a) = (F —1)ld) — ae(zp— 1)@} (760

We consider (7.2) at time 7 4 At to obtain solution for the displacements,
velocities, and accelerations. Substituting the relations for {Giva and {G,, 4.}
from (7.59) and (7.60), respectively, into (7.2), we obtain

(5 amtm + %1 + K1) (g,
= (0l | (35— 1)t + Ae(3 — 1)1l i)
| gat + (g - 1) @
+ ? Jll + 5l |9 (7.61)

Equation (7.61) is rewritten as

_”\m”_mmlbh — m@llbh A\NQNV
where the effective mass matrix [/7] and effective force vector {(,, »,} are

1
S Ar?

[m] + %E + [£] (7.63a)

(Grvad = 10l + [ (3 — 1)l + A (5 — 1)1 43

gt + (4 — 1)1l |

| a5l Jiad (7.63b)

(7] =

Solution of (7.62) yields {g,, ,}, which is then substituted in (7.59) and (7.60) to
obtain velocities and displacements at ¢ + Ar.

The important features of this method are that for linear systems the
amplitude of a mode is conserved, and the response is unconditionally stable
provided that o > } and > 0.25 (« + 0.5). However, the & — } and § = 1
values give the largest truncation error in the frequency of the response as
opposed to other f§ values. For a multiple-degree-of-freedom system in which a
number of modes constitute the total response, the peak amplitude may not
be correct.
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7.4.4 Park Stiffly Stable Method

The Gear two-step and three-step methods are based on the second- and
third-order interpolation of displacements using backward difference formulas,
respectively. The velocity formula at time ¢ +- At in the Gear two-step method
is

Gevar = N|>NANQ~+E — 49, + g._a) (7.64)

The difference formula for velocity at time ¢t + At in the Gear three-step
method is given by (7.41b). The Gear two-step method introduces high numerical
damping in the solution, whereas the Gear three-step method is unstable for
the frequency ranges (w At < 2) of interest. The Park stable method is the
combination of the Gear two- and three-step methods to achieve an accurate
and stable method for the low-frequency range and stable for all higher-fre-
quency components. The velocity formula in the Park stiffly stable method is
derived using a linear combination of (7.41b) and (7.64) as

. 1 1
Gerar — qﬁN‘DNAWQ:? - AQ» + QTEV

(s — 189, 4 90— 20.20) | (7.659)
or
Govse = (10,00 — 15, + 64,0 — Gr-200) (7.65b)
Similarly,
Govse = o (0dine — 150, + 64, sy — G200 (7.66)

The difference formulas in the Park algorithm will then be given by

{Gerac = :OmQ:Ew - HMWQL + mmglbh — {§i-240}] (7.67)

“HQ:DL :OmQ:DL - ﬂmMQL + mmg DL - m@.lnbhm_ Aqowv

We consider Q.NV at time ¢t + At to obtain solution for the displacements,
velocities, and accelerations. Substituting the relations for {g,,,} and {g,, a:}
from (7.67) and Q.mmvv respectively, into (7.2), we obtain

Aum_ %Lé T A ? Rlel + Ev {Geract

= “HQ:DL lT _”»xw_mg - |_”§Lm$ Ew + _”»YLWQTNDL

+ Awmﬂbmn_”\xu + QHDNT_U_VMQTNEW (7.69)
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Equation (7.69) is rewritten as

UG v a} = {Qrsack (7.70)
where the effective mass matrix [/7] and effective force vector {Q,. 4.} are given
by

() = gsmm?_ + 2 [e] + [A] (7.712)

(st = (Quradd + gl — 1 ml{di-al)

1 . 150
QTSSTEL + AQT& m DN VMQL

— (gl + 26)) fa-ud
+ Aw@ _ENE + &EVE-EL (7.71b)

Solution of (7.70) yields {q,.,}, which is substituted in (7.68) to obtain veloc-
ities. Then {4, ,} are obtained by substituting the calculated values of {g,, .}
into (7.67).

It can be observed that in the Park stiffly stable method, calculation of
{q.. 4.} involves displacements and velocities at ¢, t — At, and t — 2At. Thus, to
obtain the solution at time At and 2 At, a special starting procedure is required.
This makes the method not self-starting. The method also requires a large
computer memory to store velocities and displacements for two previous time
steps.

7.5 CASE STUDY
7.5.1 Linear Dynamic System

In order to compare economy, efficiency, stability, and accuracy of various
integration schemes, the response is obtained here for a system with two degrees
of freedom as shown in Fig. 7.5. We first consider linear springs and viscous
damping and obtain the equations of motion as

F(t) BX1)
— —=&
b

m

> Fo———

-

Figure 7.5 Two-degree-of-freedom system.,
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T .r T =
q> —Cy C2 ] 92 —k, k.l lq2 F,(t)

(1.72)

The numerical values of the mass, damping, and stiffness matrices are
chosen as

m OH— G ¢, ey —c| [ ki +k, —ki][q: Fi()
0 m,

T L e L e k-l 2 1 g
[0 107 S l—01  01f S .
All the initial conditions are selected as zero and the forcing function vector as
F.( 0 Fi(z 0
0 _ fort >0  and 0] _ fort <0 (7.74)
Fy(0) 4 Fy(r) 0

Since this system is linear, first we obtain an analytic solution which is
later used to compare with the numerical solutions yielded by the different
integration methods. Laplace-transforming (7.72) with zero initial conditions,
we obtain

[Z()Ha(s)} = {F(5)} (7.75)

where the impedance matrix Z(s) is given by

mys? + (¢; + c)s + (kg + k) —(Ccy5 + k)
[2(0 = —(cy5 + ky) m,s* + c,5 + ks (7.76)
The system characteristic equation becomes
A(s) = det [Z($)]
= [s2m; + s(c; + ¢,) + (ky + k)I(s2my + c,8 + ky) — (cp8 + ky)?
= mymys* + [myc, + my(c, + ¢)Is® + [mk, + my(k, + k,) + c,c,]s?

+ (c,ky + c.ky)s + kik, =0 (7.77)
Inverting the impedance matrix (7.76), it follows that
@) = CENFG)) (7.78)
where the transfer function matrix is given by
2 k k
6] = x| 7 et ca8 g (1.79)
(%) c,s + k, mys? + (¢ + ¢)s + (kg + k)
The displacements in the Laplace domain are
Aoy mystcys kg s + ky g 80
QmAhv - DA%V m‘HAhv IT DA%V m‘NA%V Aﬂ v

Ga(s) = ﬁ%& Fi(s) + Mt et mw% T k) gy (781

Since the initial conditions and F, are all zero, the displacements in the time
domain may be obtained from (7.80) and (7.81) by employing the convolution
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integral as

0.0 = [ Goalt — OF() (7.82)
0:0) = [ Goalt — VP () (7.83)
where
Gyat) = L T*va@ (7.84)
Gaa(t) = h-%saN RECH +>qmw e T »Ng (7.85)

For the parameter values given by (7.73), the characteristic equation (7.77)
becomes

A(s) == 10s* + 2.1s% + 211.01s* + 2.1s + 20 =0

and its roots are Ay, A, = —0.10045635 + j4.581906 and A;, A, =
—0.0045436458 |- j0.3085442. Obtaining the inverse Laplace transformation
indicated by (7.84) and (7.85) and carrying out the convolution integrals of
(7.82) and (7.83), we get

q.(t) = 0.2 + (0.46337973 + j0.17946622)10~ 3¢x:*

+ (0.46337973 — j0.17946622)10- 3¢

+ (—0.1004633779 — j0.00133652411)e*

+ (—0.1004633779 + j0.00133652411)e (7.86)
4,(t) = 4.2 + (—0.187764 — j0.178863)10~ 5S¢

4 (—0.187764 + j0.178863)10- 3¢

+ (—2.099998084 -+ j0.03095190715)e**

+ (—2.099998084 — j0.03095190715)e™ (7.87)

The displacements g, (f) and g,(f) given by (7.86) and (7.87) are shown
plotted in Fig. 7.6. The responses show decaying oscillations which, as time
increases to a sufficiently high value, will reach the constant values of 0.2 and
4.2, respectively.

In this numerical study, the value of the constant & in the Wilson theta
scheme was taken as 1.5, whereas the parameters o and § in the Newmark beta
scheme were chosen to be 1/2 and 1/6, respectively. Those methods that are not
self-starting were started by using the Runge—Kutta method for the initial time
steps. The results for the displacements obtained using the various integration
schemes with a time step of 0.01 s are shown in Fig. 7.7. For this time step all
the integration schemes yield the same results, which are therefore shown in a
single Fig. 7.7. On comparing Figs. 7.6 and 7.7, it is seen that by choosing a
sufficiently small time step, all the integration schemes can yield accurate
results, but at the expense of computational time.
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Figure 7.7 Numerical solution of linear dynamic system; time step

at Ar = 0.01s.

Figure 7.6 Analytical solution of linear dynamic system.
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The results obtained when the time step is increased to 0.05 s are shown in
Fig. 7.8(a) for the displacement ¢, and in Fig. 7.8(b) for the displacement g,.
The Newmark beta method becomes unstable at this time step and the spurious
growth in g, is seen after two cycles in Fig. 7.8(a), whereas the spurious growth

o
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TIME (SEC.)

y

250 500 750 1000 1250 1500 1750 2000 2250 250.0
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Figure 7.8 (a) Displacement g, for numerical solution of linear dynamic system;
time step Ar = 0.05s.
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Figure 7.8 (b) displacement ¢z for numerical solution of linear dynamic
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in ¢, occurs after seven cycles, as seen in Fig. 7.8(b). The other integration
schemes remain stable for this time step.

As the value of time step is increased further to 0.1 s, the instability exhib-
ited by the Newmark beta method appears after a lesser number of time
increments, as seen in Fig. 7.9. The other schemes continue to show stable
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Figure 7.9 (a) Displacement g for numerical solution of linear dynamic system;

time step At = 0.1s.
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behavior; however, the response obtained from the fourth-order Runge-Kutta
scheme is highly damped, as seen in Fig. 7.9. When the time step is increased to
0.5 s, the Newmark beta, central difference predictor, two-cycle iteration with
trapezoidal rule, and the fourth-order Runge-Kutta schemes give unstable
solutions, whereas the Park, Houbolt, and Wilson theta schemes remain
stable.

A comparison of the CPU time used on the DEC-20 system for 5500 time
steps (275 s) is given in Table 7.1 for time increment At = 0.05 s. It can be seen

TABLE 7.1 Comparison of Integration Scheme for Linear
Problem®

Integration Method DEC-20, CPU Time (s)

—

Central difference 26.32
2. Newmark beta 27.95 (unstable)
(@ = 0.5, § = 1/6)

3. Wilson theta 27.21
@ =1.5)

4. Houbolt 26.04

5. Park 26.69

6. Runge-Kutta 27.41

7. Two-cycle interation 25.20

aNumber of time steps = 5500; time increment = 0.05 s.

that the two-cycle iteration with trapezoidal rule requires the least CPU time;
however, the scheme becomes unstable for a larger time step. Next are the
Houbolt, central difference predictor, Park, Wilson theta, fourth-order Runge-
Kutta, and Newmark beta schemes, in that order. The Houbolt scheme has the
advantage of using less CPU time and being unconditionally stable. The CPU
time for the Newmark beta method in Table7.1 does not have much significance
since the scheme is unstable for this time step. The differences in the CPU time
shown in Table 7.1 are not large because this example considers only a two-
degree-of-freedom system.

7.5.2 Nonlinear Dynamic System

To compare the performance of each integration scheme further, a non-
linearity is introduced in the two-degree-of-freedom system of Fig. 7.5. Specif-
ically, the force F, in the spring connecting the masses m, and m, is assumed to
be related to its displacement x, by F, = k,(x, + 0.5x?). The equations of
motion are given by

mg, + ¢4, + kig, — kil(g, — q:) + 0.5(42 — 91)°] — (¢, — §1) = F,
myg, + ¢, — q1) + k;l(q. — q1) +0.5(q, — q1)’] = F,



222 Dynamic Response by Numerical Methods Chap. 7

9
20 30 4.0

1.0

0.0

250 500 750 1000 1250 1500 1750 200.0 2250 2500
TIME (SEC.)

42
2.0 3.0 40

1.0

00

7 T T T T T T T T 1
250 500 750 1000 1250 1500 1750 2000 2250 250.0
TIME (SEC.)

Figure 7.10 Numerical solution of nonlinear dynamic system by Houbolt
scheme ; time step A = 0.01 s.

In matrix notation, these equations may be written as
m, OH_ S 4 ¢+ ¢ |n.~H_ QH_
q, —C C2 q:
ky + k, + 0.5ky(q2 — q:1)* —k, — 0.5k,(q, — Q_vnw_ q1 F,
—ky, — 0.5k,(q, — q1)* k, + 0.5k,(q: — 9:1)* ) 142 Fy
(7.88)

In the foregoing equation, the mass and damping matrices [m] and [c] are
as given by (7.73) and are constant. The stiffness matrix [k] in (7.88) is computed
and updated at each integration step. The values of k, and k, are as given by
(7.73). All the initial conditions and the forcing function F, are assumed to be
zero and the forcing function F, is a step function of magnitude 4 as in (7.74).

The results by the Houbolt scheme by using a time step of 0.0l s are
shown in Fig. 7.10. All the other integration schemes, except the two-cycle
iteration method, yielded identical results for this time step and hence are not
shown here. The two-cycle iteration scheme yielded an unstable solution for
time step At > 0.01 s, and those results are omitted here.

0 m,

LT
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The results obtained when the time step is increased to 0.05 s are shown in
Fig. 7.11(a) for the displacement ¢, and in Fig. 7.11(b) for the displacement ¢,.
For this time step, the Newmark beta method becomes unstable after two
cycles. The Wilson theta method is also unstable, whereas the Houbolt and Park
schemes are on the verge of instability. The fourth-order Runge-Kutta method
yields a solution that is highly damped, whereas the central difference scheme
yields accurate results.
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Figure 7.11 (a) Displacement g; for numerical solution of nonlinear dynamic
system; time step Ar = 0.05s.
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As the time step is increased to 0.1 s, as seen from Fig. 7.12, the Newmark
beta, two-cycle iteration, Wilson theta, Park, and Houbolt schemes all yield
unstable solutions. Only the fourth-order Runge-Kutta and the central differ-
ence predictor schemes are stable. As seen from Fig. 7.12, the Runge-Kutta
scheme introduces damping, whereas the central difference predictor method
yields results that are quite accurate compared to those of Fig. 7.10.

A comparison of the CPU time used on the DEC-20 computer for 5500
time steps (55 s) is given in Table 7.2 for the time increment At = 0.01s. It is
seen that the central difference predictor scheme uses the least CPU time. The
Park method is a close second and it is followed by the Runge-Kutta and
Houbolt methods. The CPU time listed for the two-cycle iteration scheme has
no significance since the method is unstable.

TABLE 7.2 Comparison of Numerical Schemes for
Nonlinear Problem?

Integration Method DEC-20 CPU Time (s)
1. Central difference 27.76
2. Newmark beta 28.83
(@ =0.5, 5 =1/6)
3. Wilson theta 28.51
®@ =1.5)
4. Houbolt 28.33
5. Park 27.93
6. Runge-Kutta 28.32
7. Two-cycle iteration 85.12 (unstable)

aNumber of time steps = 5500; time increment = 0.01 s,

7.6 SUMMARY

Three explicit and four implicit methods have been studied in detail. Each
integration scheme was used to obtain the response of a system with two degrees
of freedom for different time steps and a sufficient number of time increments to
show whether the scheme becomes unstable, if it introduces damping, and the
amount of CPU time that is required. For the linear problem studied, it was
found that when small time increments are used, the CPU time is the least for
the two-cycle iteration with trapezoidal rule, but the method becomes unstable
as the time step is increased. The Houbolt method requires a little more CPU
time than the two-cycle iteration scheme. However, it has the advantage of
being unconditionally stable. The central difference and Park schemes are not
far behind.

When these integration schemes are used to obtain the response of a
nonlinear problem, it is found that all the schemes that are stable for the linear
example do not remain stable for the nonlinear example. It is found that the
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two-cycle iteration, Newmark beta, and Wilson theta methods are unstable
even with a relatively small time step, while the response from the fourth-
order Runge-Kutta scheme is highly damped.

From the linear and nonlinear examples considered in this study, it ap-
pears that the Houbolt, Park, and central difference predictor methods exhibit
superior stability characteristics for large time steps and the CPU time require-
ments of these three methods are not significantly different for a system with
few degrees of freedom.

PROBLEMS

7.1. Obtain a digital computer simulation of the system described by (7.9) with the
following parameter values: F(z) = 0, 8(0) = 1, mhov =0,m=1,k=1,c=1,
x(0)=1,x0)=1,m; = 1,a=1, g = 0.3, g = 9.81. Use the following integra-
tion techniques and compare the stability and cost of computations:

(a) Fourth-order Runge-Kutta method.
(b) Park stiffly stable method.
(¢) Houbolt method.

7.2. An elasto-plastic spring with a force versus displacement curve as shown in Fig.
P7.2(a) supports a mass of 37,500 kg [Fig. P7.2(b)]. A dynamic force linearly
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Figure P7.2

F

74.
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varying from 4500 kN at ¢ = 0 to zero kN at 0.1 s is applied to the mass [Fig.
P7.2(c)]. Find the maximum deflection attained and the time required to attain
this maximum deflection. Assume the initial conditions as y(0) = y(0) = 0.

An undamped spring-mass system with mass m = 8 kg has a natural period of
0.5 s. The system is subjected to an impulse of 9 N-s which has a triangular shape
with a time duration of 0.4 s. Determine the maximum displacement of the mass.
Use the following numerical methods:

(a) Fourth-order Runge-Kutta method.

(b) Central difterence method.

Figure P7.4(a) shows a wheel-axle set. The nonlinear equations of motion for this
wheel-axle set, for the lateral and yaw degrees of freedom, are as follows:

2 12
mp -+ -_w:c. - vy - N\v: W - N,\\%PQV + WAAL(Y) + kyy + ¢, = F0)
22, . 2afss(re —re\ . 2/,
Ly + “\Z.\\ - mMMZA; 5 ;v T ,\_WN.\\
— 22y — vy — 2L2A0) — apWabe + kW + ol = F(
V y 4 "o Ly ay w40¢ 14 oy = __\Nv

where m = mass of the wheel-axle set = 30 lb-sec?/in.
I, = yaw moment of inertia of the wheel = 16,500 1b-in.-sec?
a = 30in.
ro = radius of the wheel = 20 in.

z
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Figure P7.4
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1.5.

1.

2,

J1, = longitudinal creep coefficient = 3.6 X 106 Ib
J12 = 0.46 x 10¢ in.-1b
f22 = spin creep coefficient = 66,000 in2-1b
fs3 = lateral creep coefficient = 3.9 x 106 1b
W, = axle load = 66,000 1b
k, = lateral stiffness = 5000 1b/in.
¢, = lateral damping = 100 lb-sec/in.
k, = yaw stiffness = 187,200,000 in.-1b/rad
¢, = yaw damping = 31,200 Ib-in.-sec/rad
V = axle speed = 15,056 in./sec.
J, = initial taper angle = 0.05
F,(¢) = lateral input force
F,(t) = yaw input moment = 0.0
Figure P7.4(b) shows the lateral impact force versus time relationship, whereas
Figs. P7.4(c)~(f) represent variations of A;(y), A,(3), and A.(y). Solve the equa-
tions of motion numerically, using the following schemes:
(a) Newmark beta (& = 0.5, f = 1).
(b) Wilson theta (§ = 1.5).
(¢) Houbolt.
(d) Park stiffly stable.
(e) Central difference.
(f) Runge-Kutta.
(g8) Two-cycle interation with trapezoidal rule.
Plot the time histories for parameters y and ¥ and compare the results with
respect to:
(1) Computing cost.
(2) Stability of solution.
(3) Accuracy.
Resolve Problem 7.4 using an initial lateral displacement of 0.36 in. instead of
the initial lateral force. Use the following numerical schemes:
(a) Newmark beta (& = 0.5, B = 1).
(b) Park stiffly stable.
(¢) Central difference.
(d) Wilson theta (@ = 1.5).
(e) Runge-Kutta.
(f) Two-cycle integration with trapezoidal rule.
Plot the time histories for y and ¥ and compare the resuits with respect to:
(1) Stability of solution.
(2) Accuracy.
(3) Computing cost.
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LINEAR VIBRATIONS

8.1 INTRODUCTION

This chapter deals with the study of linear vibrations of dynamic systems. In
many applications, vibrations occur about an equilibrium state or about a
stationary motion. Assuming that the equations of motion contain all the non-
linearities that are analytic functions of their arguments, the equations that
describe small perturbations can be linearized as discussed in Chapter 6. The
vibrations studied in this chapter may then be considered as perturbations about
an equilibrium state or stationary motion and are governed by linear, time-
invariant ordinary differential equations.

After a discussion of the preliminary concepts in vibration analysis, we
begin with the study of vibrations of single-degree-of-freedom systems. Two
methods are presented for the analysis of linear vibrations. The first method is
a time-domain solution and employs the state transition matrix developed in
Chapter 6. The second method is a frequency-domain solution and employs the
harmonic response function for the analysis of steady-state forced vibrations.

The analysis techniques for a single-degree-of-freedom systems are then
generalized to multiple-degree-of-freedom systems. The time-domain method is
based on matrix diagonalization and normal-mode solution techniques that
were developed in Chapter 6. The frequency-domain method employs the har-
monic response function matrix for the study of steady-state forced vibrations.
Continuous systems with distributed mass and elasticity have infinite degrees
of freedom and are not included in this study.
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8.1 INTRODUCTION

This chapter deals with the study of linear vibrations of dynamic systems. In
many applications, vibrations occur about an equilibrium state or about a
stationary motion. Assuming that the equations of motion contain all the non-
linearities that are analytic functions of their arguments, the equations that
describe small perturbations can be linearized as discussed in Chapter 6. The
vibrations studied in this chapter may then be considered as perturbations about
an equilibrium state or stationary motion and are governed by linear, time-
invariant ordinary differential equations.

After a discussion of the preliminary concepts in vibration analysis, we
begin with the study of vibrations of single-degree-of-freedom systems. Two
methods are presented for the analysis of linear vibrations. The first method is
a time-domain solution and employs the state transition matrix developed in
Chapter 6. The second method is a frequency-domain solution and employs the
harmonic response function for the analysis of steady-state forced vibrations.

The analysis techniques for a single-degree-of-freedom systems are then
generalized to multiple-degree-of-freedom systems. The time-domain method is
based on matrix diagonalization and normal-mode solution techniques that
were developed in Chapter 6. The frequency-domain method employs the har-
monic response function matrix for the study of steady-state forced vibrations.
Continuous systems with distributed mass and elasticity have infinite degrees
of freedom and are not included in this study.
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8.2 CLASSIFICATION OF VIBRATIONS

Vibration is in general a motion periodic in time and is used to describe oscilla-
tion in mechanical systems. In most cases, the general purpose is to prevent or
attenuate the vibrations, because of their detrimental effects, such as fatigue
failure of components, failure of bearings, and generation of noise. However,
there are some applications where vibrations are desirable and are usefully
employed, as in vibratory conveyors and hair-cutting shears.

Vibrations may be classified into three categories: free vibrations, forced
vibrations, and self-excited vibrations.

Free vibrations. Free vibrations can occur only in conservative sys-
tems where there is no friction or damping and any external exciting force is
absent. Here, the total mechanical energy, which is due to the initial conditions,
is conserved and exchange takes place between the kinetic and potential energies.
Since almost all mechanical systems exhibit some form of damping, the only
applications where free vibrations can exist belong to the area of celestial me-
chanics, space dynamics, and orbits of satellites, where the orbit lies outside the
atmosphere of the body around which it translates such that there is no drag.

Forced vibrations. The vibrations in this case are caused by an
external force that excites the system. In forced vibrations, in contrast to free
vibrations, the exciting force supplies energy continuously to the system to
compensate for that dissipated by damping. Forced vibrations may be either
deterministic or random. The differential equations of motion of the dynamic
systems that we consider in this book are deterministic; that is, the parameters
are not randomly varying with time. But the exciting force may be either a
deterministic or a random function of time; that is, its amplitude and period
may either be deterministic or randomly varying. In deterministic vibrations,
the amplitude and frequency at any designated future time can be completely
predicted from the past history. Random forced vibrations are defined in statis-
tical terms and only the probability of occurrence of designated magnitudes and
frequencies can be predicted.

Self-excited vibrations. Self-excited vibrations are periodic and
deterministic oscillations of the limit-cycle type and are caused by some non-
linear phenomenon. Under certain conditions, the equilibrium state or station-
ary motion is unstable and any disturbance causes the perturbations to grow
until some nonlinear effects limit any further growth. The energy required to
maintain the vibrations is obtained from a nonalternating power source. In self-
excited vibrations, the periodic force that excites the vibrations is created by the
vibrations themselves. If the system is prevented from vibrating, the exciting
force disappears. By contrast, in forced vibrations the exciting force is inde-
pendent of the vibrations and can persist when the system is prevented from

vibrating.
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In this chapter we study linear forced vibrations of the deterministic type.
Study of linear free vibrations is also included. In many vibrating systems, the
only damping is the so-called structural damping, which is very small, and in
such cases it will be seen that the damped natural frequencies are very close to
the natural frequencies. Hence, even though free vibrations do not occur in
practice, their study is important for the purpose of determining the natural
frequencies. The values of the damped natural frequencies are then known
approximately and can be chosen such that they are not close to the forcing
frequencies in order to prevent large-amplitude forced vibrations and near-
resonance.

8.3 UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS

As discussed in Chapter 5, a single-degree-of-freedom system is represented by
a single Lagrange equation of motion in the form

d (dL JL

i) a4 = &1
where L is the Lagrangian, g the generalized coordinate, and Q the generalized
force. Assuming that the nonlinearities are analytic functions of their argu-
ments, we linearize the equations that represent small perturbations about an
equilibrium state or a stationary motion. In Example 6.7, which represents a
single-degree-of-freedom translational system, the linearized equation for per-
turbations about the equilibrium state (¢ = 0, ¢ = 0) can be represented as
given by (6.62) in the form

m(A§) + c(Ag) + k(Ag) = AF

For simplicity of notation, we represent the deviation Ag by ¢ and rewrite this
equation as

mg + cq+ kg =F (8.2)

This system, which represents a mass m attached to a linear spring with
.mmazm constant k and a linear dash pot with coefficient ¢ as shown in Fig. 8.1,
1s one of the simplest dynamic systems in which elastic and inertia forces interact.
In many applications, the mass—spring-damper of Fig. 8.1 is a conceptual model
for a more complicated physical system such as liquid sloshing in a propellant
Q.Ew. For example, reference [8] shows how to determine the slosh mass, asso-
ciated spring constant, and damping constant for the study of the fundamental
mode of oscillation of liquid sloshing in a cylindrical tank. A single-degree-of-
freedom torsional system where g represents an angular displacement is
described by

I+ cg + kg= M 8.3)

where I is the mass moment of inertia, ¢ the torsional damper constant, k the
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Figure 8.1 Mass, spring, and damper
F(t) system.

Figure 8.2 Inertia, torsional spring,
and torsional damper system.

torsional spring constant, and M the applied moment or torque as indicated in
Fig. 8.2.

Dividing (8.2) throughout by m and defining natural frequency w, and
damping ratio { as

_ [k 1 _c
8:1)\M and m\w)\\:\a
we obtain
i+ Aod + 0lg=F 8.4
The reason for the definition of the natural frequency in this manner

would become clear in the following when we consider the free vibrations of the
undamped system. The frequency w,./1 — {? is called the damped natural
frequency, for reasons that would become obvious when we consider the vibra-
tions of damped systems in the next section. In a similar manner, dividing 8.3)
throughout by I and defining the natural frequency and damping ratio as

8~.H)\h and mHW c

%

Sec. 8.3 Undamped Single-Degree-of-Freedom Systems 237

we get
i+ 204+ o= 1M 38.5)

In this section we consider the undamped case where ¢ = 0 and let { = 0
in (8.4) and (8.5). As discussed earlier, such conservative systems do not really
exist except in the area of space dynamics. However, there are many applica-
tions where the damping ratio { has a small value around 0.05 to 0.02 and the
damped natural frequency w,./1 — {? is very close to the natural frequency
,. In such cases, when the system is subjected to a periodic force whose fre-
quency @ is close to the natural frequency, near-resonance occurs. It is a good
first approximation to consider the system as undamped and determine its
natural frequency. The damped natural frequency is then known approximately
and care can be taken to ensure that it is not close to the forcing frequency.

Example 8.1
A torsion pendulum consists of a vertical shaft AB, assumed massless, rigidly attached
at the top and supporting a rigid rod CD of uniform cross section and having length
L and mass m;. (a) Knowing the dimensions and material of shaft 4B, determine the
natural frequency of the pendulum. (b) Determine the distance b on the rod at which
two equal weights, each of mass m,, should be clamped such that the natural frequency
is reduced to one-half of the value obtained in part (a).

(a) Assuming that there is no damping, the equation of motion of the torsional
pendulum is

160 + k0 =0 (8.6)

where @ is the angular displacement about the z axis as shown in Fig. 8.3. The natural
frequency is given by w, = +/k/I. The torsional stiffness k& is obtained from a knowl-
edge of strength of materials. If a twisting moment M is applied to end B of shaft AB
with build-in end A, within the elastic limit the angle of twist & of end B is given by

0 ML,

G,

c [ ] B D N
—_— g == Y= — —_——} ¥ 3
L | || N ‘
my oﬂmj m, r\\-)\
L L/2 F_ L/2 _ /
™ * 1
r4

Figure 8.3 Torsional pendulum.
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where L; is the length 4B, I, the polar moment of inertia of its cross-sectional area,
and G its shear modulus. Hence, the torsional stiffness becomes

M _Gl
g L,
The mass moment of inertia of rod CD about the z axis can be obtained as

h\Ng
— 7 52
~|% T Yy

—-L/2

k

= rgmL?
Hence, in the absence of the attached masses, the natural frequency becomes

GI, 7”2

It should be noted that it is assumed that shaft AB does not contribute to the mass
moment of inertia about the z axis; otherwise, the natural frequency will be smaller

than that given by (8.7).
(b) When two equal masses, each of mass m,, are attached to rod CD, the

combined mass moment of inertia about the z axis becomes
I'= wgﬂhn -+ NSN\VN

and the natural frequency is given by

. GI, 1/2
@, = T;&s_i ) ®.8)

Since, w, = 0.5w,, from (8.7) and (8.8) we obtain

1 1 1
pm L2 +2mpb? 4 Lm L2

It follows that
1/2
b— m EQ L 8.9)

8.3.1 Free Vibrations

We now consider free vibrations of a single-degree-of-freedom system
whose equation of motion is obtained by omitting the damping and external
forcing function is (8.4) or (8.5):

§d+wig=0 (8.10)
Choosing state variables as x; = g and x, = ¢, the state representation of
(8.10) may be written in the form

{x} = [4]{x}] (8.11)

= 0ol E.112)

w: 0

where the [4] matrix is
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The solution of (8.11) is given by

X 0
gy [ © (8.11b)
X2 x2(0)
where, as discussed in Chapter 6, the Laplace transform of the state transition

matrix is
~ . N 1 m Ry m
D(s) = (1 — A) ' = Tl 2 (8.12)

n

The characteristic equation of matrix A is given by s? + w? = 0 and its eigen-
values are s = + jw,. Employing partial-fraction expansion of each element of
(8.12) and then the inverse Laplace transformation, we obtain

Q.\Ei A_l NI\B:.‘ QI\B:.‘ _ NI\S:.‘
® 2 2jw,
1)y =
A v Q.F:; g Jont Q.\Bi A ml.\ei
— @ :
" 2j 2
1 .
COS w, ¢ —SIn w,t
= w, (8.13)

—w,sinw,;t cosw,t
Substituting (8.13) in (8.11b), we get

q(t) = q(0) cos w,t | Q.AOVSF sin @,t 8.14)
4(t) = —q(0)w, sin w,t + ¢(0) cos w, ¢ 8.15)
The displacement (8.14) and velocity (8.15) may also be written as
g(t) = usin{w,t + y) (8.16)
4(t) = uw, cos (w,t + y) (8.17)
where the amplitude v and phase angle y are defined by
3 2) 1/2
u— TNSV + ﬁ%g v (8.18)
— tan-1 2:9(0) 8.1
w 50) (8.19)

The total mechanical energy at any time is the sum of the kinetic and potential
energies and is expressed as

E = }mg*(t) + $kq*(t)
= 240 + wig*0)] (8.20)
At the initial time, we have

E=2[%0) + 03g*(0)] 8.21)
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Also, substituting from (8.16) and (8.17) in (8.20), the mechanical energy at any
instant of time becomes

E =7 o}
and after employing (8.18), we obtain
E = T [¢*(0) + wig*(0)] (8.22)

The system here is conservative and, as expected, the mechanical energy
is conserved and at any instant of time, it is equal to the initial mechanical
energy.

8.3.2 Forced Vibrations

Let the undamped system be excited by a sinusoidal force F(f) =
fo sin et having amplitude f, and circular frequency w. The equation of motion
becomes

i+ wiq— w £ sin @t (8.23)

Choosing the state variables as x, = ¢ and x, = ¢ as done earlier, it follows
that

{x} = Alx} + (b} fo sin wt (8.24)
where the matrix A has been defined by (8.11a) and
0
{b} =131 (8.25)
m
From Chapter 6 it follows that the solution of (8.24) is given by
{x} = ®O){x(0)} + b O — )b} f, sin o' dt’ (8.26)

where the state transition matrix @®(¢) is given by (8.13). .
The convolution integral, which is the second term on the right-hand side
of (8.26), may be written as

ﬂ . !’ o
—t — w,(t — 1
%“ cos w,(t — ') - sin @,( ) 1 41 sin wf” dr’

°| —w,sin w,(t —t) cosw,(t — 1) |Im

Jo sin w,(t — t') sin wt’ dt’

|l maw,
o .\.O . ’ s \&\
0| L0cosw,(t — t')sin wt’ dt
m

Jo N|_\N sin wtr — 8@ sin w, ¢
_jmw; — @ n (8.27)

\.08
Jo_ 2 (cos wt — cos w,t
SS:lSNA o)
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Letting m = k/w? and the frequency ratio &« = w/w, in (8.27) and then
employing this equation and (8.14) in (8.26), we obtain

1

—r (sin wt — asin @)  (8.28)

q(®) = ¢(0) cos w,t + Q.ASSF sin w,f + W

Hence, the response contains two frequencies: the natural frequency w,
and forcing frequency w. When @, and w are close to each other, the response
exhibits a beat phenomenon and when & = w/w, = 1, it is obvious from (8.28)
that ¢(¢) is infinite (i.e., there is resonance). When the initial conditions ¢(0) =
4(0) = 0, the response ratio, which is defined as the ratio between the dynamic
displacement and static displacement is given by

g 1
ok T 1T—a?

(sin wt — o sin w,f) (8.29)

8.4 DAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS

8.4.1 Free Vibrations

Since undamped systems are rarely encountered in practice, almost all
single-degree-of-freedom systems are described by (8.4) or (8.5), where the
damping ratio { is nonzero. We first consider the unforced system and letting F
or M be zero in (8.4) or (8.5), we get

§+ 2lw,qg+ w;g=0 (8.30)
Again choosing state variables as x;, = ¢ and x, = ¢, the state representa-
tion of (8.30) becomes
X 0 1
Ml ﬁ o (8.31)
%, —w; —2o,]lx,
and its solution is given by
{x} = ®@(n{x(0)} (8.32)

It is recalled that the state transition matrix for this system was obtained
in Chapter 6 and is given by (6.81). When { > 1, the system is overdamped and
the eigenvalues of matrix A which are the roots of the characteristic equation
are real and are given by

A A, = —Cow, + 0,/ — 1 (8.33)

Employing (6.81), the displacement for the overdamped case can be obtained as

— \a. + Nﬁea A1t M.N + Nﬁea 2t
QQV - QAOvﬁ M_ - Mn e I«M_ + .h.n ¢ H_

' 1 1f 1 2t
+ onVﬁﬂ et + — p—— et Q (8.34)
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qit)

a(0)

q(0)

Figure 8.4 Free response of overdamped system.

This response is shown in Fig. 8.4. It is seen that the free response of an
overdamped system is not oscillatory and decays to zero as time increases.

When 0 < { < 1, the system is underdamped and the eigenvalues of
matrix A are complex conjugates with negative real part and are given by

A, Ay = @, L jo,/1 — (8.35)
Again employing (6.81) and substituting for A, and A, from (8.35), the displace-
ment for the underdamped case becomes

QSHm.Aea @Aelfgov &BS,}\\_|m:+-§8m8~_)\|_| NNL Am.w@v
w,/1—
As mentioned earlier, the damped natural frequency is defined by w, =
w,~/1 — (2. Now letting

u = “—HQAOV +8m8=&8gp i _”QAOH_NV_\N

SnQ on H_
4(0) + {w,g(0)

y = tan™!

equation (8.36) is written as
q(t) = ue™** sin (Wt + ¥) 8.37)

This response is shown in Fig. 8.5. It is seen that the free response of an
underdamped system is a damped sinusoid and decays to zero with time as the
initial mechanical energy is continuously dissipated per each cycle. The period
T is related to the damped natural frequency by w, = 2=/T. The amplitudes a
and b, which are one period apart, are related by logarithmic decrement to the
damping ratio as discussed in Chapter 6 by

a 2r{
In BT (8.38)

Even though free vibrations are not sustained in damped systems, wuoi._-
edge of the decaying free response is important because it is often employed in
practice for the experimental determination of the natural frequency and
damping ratio of complicated systems.

[*
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Figure 8.5 Free response of underdamped system.

Example 8.2

We consider a setup for experimental determination of the weight of a tracked vehicle.
The vehicle approaches a massless bumper and couples with it. The bumper displace-
ment g(t) from its equilibrium position is recorded versus time as shown in Fig. 8.6.
It is known that the spring constant & = 180,000 N/m. Determine the mass of the
vehicle in kilograms and the value of the damping ratio {.

After the vehicle couples with the bumper, the differential equation that de-
scribes the motion is given by

mg+cd + kg=10 (8.39)
with initial conditions g(0) = 0 and 4(0) == 0. Hence, in (8.37), we have u = 4(0)/w,
and = 0. It follows that the response is

g(0) = 99 o sin o, (8.40)
(OF}
From the experimental results of Fig. 8.6, the period of the damped oscillations

is T = 0.8 s and hence the damped natural frequency is 1/7 = 1.25 Hz. It follows that

w1 — {2 = (1.25)2n = 7.854 rad/s (8.41)
Also, from the response of Fig. 8.6, we get
015 2L
_Da = H‘ﬂ (8.42)

Solving for { from (8.42), we obtain { = 0.396 and after substituting this value in
(8.41), we get w0, = 8.553 rad/s. Then it follows that m = kjw? = 2460.4 kg.

This method of determining the natural frequency and damping ratio .
from the experimental impulse response is often employed for complicated
structures such as machine tools where a simple analytical model is not available.
Another method of experimentally determining the natural frequency and
damping ratio is based on the frequency response, and this method will be
discussed later.
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Figure 8.6 Experimental setup and response.
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Example 8.3

The disk shown in Fig. 8.7 has a total mass m distributed uniformly throughout. It
contacts the point 4 on the flat surface without slipping. Assuming small displace-
ments, (a) write the equation of motion for the disk, (b) neglect damping and calculate
the circular frequency of the system in terms of k, and m, and (c) for ¢ = 0.1 »/km,
calculate damping ratio, damped frequency, logarithmic decrement, and amplitude
ratio after five cycles of free vibration.

k(2q) T
R/2
c(34/2) -xm\m

mg ﬂ +
Ka/2 R/2
R/2

. N

A

Figure 8.7 Free vibrations of a disk rolling without slipping.

{a) As the disk moves along the flat surface, its center of gravity (c.g.) trans-
lates horizontally and the disk rotates about the axis normal to the disk. The inertia
force acting at the center of mass due to translation is m§ and the inertia moment due
to rotation is 7§ , where I, the mass moment of inertia about the axis normal to the disk,
is given by I = mR?2/2. Other forces acting on the disk are shown in Fig. 8.7. Since the
disk rolls without slipping, there is only one degree of freedom, and the angular dis-
placement @ can be expressed in terms of g as § = g/R.

The point 4 may be taken as the instantaneous center of rotation of the disk.
Summing the moments about 4, we obtain

miR + 1§ + ¥R 3R ager =0 (8.43)

After substituting for / and #§ in (8.43) and simplifying, we obtain

1.5mg + e + L7kg =0
or

Gt3Si+dta=0 (8.44)
(b) To obtain the undamped natural frequency, we compare the foregoing
equation with the standard form given by (8.30) and get

v/
©n = A 6m

(c) Again, comparing the foregoing equation with the standard form (8.30),
we obtain .

2w, =

=2 <
2 m
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or

3

(-3¢l <
T4 mw, 4 m/17

E

=

For ¢ = 0.1 »/km, it follows that

(= W Ao.:% = 0.0445

The damped natural frequency is now given by
Wy = 01— (2
= 0.99%w,,

1.683 )\ L3
m
If ¢, and g, are the amplitudes of the free vibration ¢(z) one cycle apart, from
Fig. 8.5 and equation (8.38) it follows that

n 9 _ _ 2ng

Q=+~|)\H‘NN

The amplitudes of g(¢) that are five cycles apart are related by

1

= 0.278

In-2% — 50.278) = 1.39

dn+s
or

In_ — 0249

Qn+s

8.4.2 Forced Vibrations: Time-Domain Method

We consider the forced vibrations of a damped single-degree-of-freedom
system of (8.4), where the exciting force F = f; sin wt (i.e., simple harmonic
with amplitude £, and circular frequency w). The equation of motion, therefore,
becomes

i+ 2Lwg + wiq — 10 sin wr (8.45)

T m

We first discuss a time-domain method of solution based on the state
transition matrix and later consider another method which is a frequency-
domain technique and is based on the harmonic response function. Choosing

state variables x, = g and x, = ¢, (8.45) may be expressed in the form
{x} = A{x} + {b}f, sin wt (8.46)

where
0

L ol

m
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and the solution in the form
. 0
(O} — SOXO)} + % O — 1) 1 Lfo sin wor’ dr
0

m

(8.47)

where the state transition matrix ®(¢), as obtained in Chapter 6, is given by
(6.81). The part of the response ®(¢) {x(0)} due to initial conditions has been
discussed earlier and the displacement given by (8.34) for the overdamped case
and by (8.37) for the underdamped case. The part of the velocity response due
to initial conditions may be obtained by differentiating (8.34) or (8.37) with
respect to time. The part of the response due to the forcing function is obtained
by evaluating the convolution integral in (8.47). Employing the state transition
matrix of (6.81) for the underdamped case, we obtain

0
I3
._. D@ — t')] 1 ¢ fosin wt’ dt’
0 m

Jo et~ sin w,(t — t')] sin wt’ dt’

n
— % ma, (8.48)
0 DTIS,AT; A% sin wy(t — t') + cos w,(t — N\vvg sin wt’ dt’
m wy

A similar expression can also be obtained for the overdamped case. Our
main interest is to obtain the steady-state forced vibrations after the transients
have decayed to zero. We denote lim, ... g(f) = ¢,(¢), which is the steady-state
forced vibrations. For the underdamped case, performing the integration in
(8.48) and employing it and (8.37) in (8.47), after taking limit as 1 — oo, we
obtain

— folk .
=0 = T wvanr + Clejey @ty (9
where
phase angle w — —tan™! A_Nlmelnwm\vmmv (8.50)

Hence, for steady-state vibrations, the displacement is sinusoidal with the
same frequency as the forcing frequency, but it has a different amplitude and
there is a phase angle. It should be noted that the phase angle as defined by
(8.50) is a negative angle and the displacement lags behind the exciting force.
The velocity for steady-state vibrations obtained from (8.48) is the same expres-
sion that is obtained by differentiating (8.49) with respect to time. By considering
the overdamped system, it can be shown that expressions (8.49) and (8.50) are
also valid for this case. The requirement for the transients to decay to zero with
time, so that steady-state vibrations exist, is that both eigenvalues of matrix A
have negative real part. This condition is satisfied whether the system is over-
damped or underdamped.
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Denoting the amplitude of g, in (8.49) by u, the dynamic magnification o N
factor, which is defined as the ratio of the resultant response amplitude to the / Nz=0

static displacement f,/k, is given by

- uo 7
1 ‘ \
LA A —— i (8.51)
Solk (1 — w?/wp)* + 2lw/w,)’]" ”
It may be noticed from (8.51) and (8.50) that both the dynamic magnifica- -60

»
w
. . w N
tion factor and the phase angle vary with the frequency ratio w/w, and the %
damping ratio {. Figures 8.8 and 8.9 show the plots of these relationships. 2
Another manner of plotting these relationships in the form of a Bode diagram > -0
will be discussed later when we consider the frequency-response method. w
.
5} /
=
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R m 1.0 Figure 8.9 Phase angle versus frequency ratio.
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Figure 8.8 Magnification factor versus frequency ratio.
Figure 8.10 Machine on foundation.

B When { =0, the result is obtained from the term ( f,/k)(1 — w?/w?2)~!sin wt
| in (8.29), which is the expression for the steady-state vibrations of undamped The equation of motion of the vibrating system is
7 system. It is noted that the steady-state vibration of undamped system is not mi g+ kg =F

| obtained from (8.49). For an undamped system, both eigenvalues of matrix A
have zero real part and the terms containing the initial conditions and sinusoidal
! terms with natural frequency do not decay to zero with time as happens in a G + 2{w,g + wliq
] damped system,
il

which may be written as

_JSo

= “3sin Wt
m

This equation is identical to (8.45). Hence, under steady-state vibrations, g, is

Example 8.4 given by (8.49) and (8.50). The force transmitted to the foundation is

A machine of mass m is resting on a foundation whose spring constant is & and viscous Fr = o + ks

damping coefficient is ¢ (Fig. 8.10). It it subjected to a sinusoidal force F = f; sin wt.

Determine the amplitude of the force transmitted to the foundation under steady- — \«Awmm Gos + Q:v (8.52)

state vibrations when @/, = 1 and damping ratio { = 0.05.
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Substituting for g, and its time derivative from (8.49), we obtain

0 2 .
Fr = - SN\SUN\HT CTADEE ﬁ omcmc cos (Wt + W) + sin (wr -+ «\L
Now,
2w .
o, ©Os (@t 4 y) + sin (0t + W)

H T + ANMMQVJE sin (@t + W -+ w,)

where i, = tan"'(2{w/®,). Hence, we obtain

£ ol + Qlwjo)
T - @?w?)? + 2Lw/w,) 2

The amplitude of F; for w/w, = 1 and { = 0.05 becomes 10.05f,. The ratio of
the steady-state amplitude of the force transmitted to the foundation to the amplitude
of the exciting force is called the transmissibility, which here has the value of 10.05.

sin (@7 + Y + ) (8.53)

8.4.3 Energy Balance in Forced Vibrations

We now consider the energy supplied by the exciting force per cycle and
show that it is exactly balanced by the energy dissipated per cycle by damping
under steady-state forced vibrations. Firstly, we restrict ourselves to the case
where the exciting force is simple harmonic (i.e., F = f;, sin wf). The work done
or energy supplied by the exciting force per cycle is given by

W, = [Fdg = h Fgdr

M 2n
_ Mb Fg d(or)

Since for steady-state vibration, g.(f) = u sin (w? -+ y), where u and y
are defined by (8.51) and (8.50), respectively, we get

2n

W, = \ox.ﬁ sin @t cos (@t + ) d(wt)

0
2n 2n
= fou TOm «\.— sin wt cos wt d(wt) — sin y .— sin? wt d(wt)
0 0

= fou[0 — 7 sin y]

After substituting for « and sin y in the expression above from (8.51) and
(8.50), respectively, it follows that

_ . J3 2fw/w,
Wi = 0= oTwl? + Clala) (8.54)

On the other hand, the work done by the damper force per cycle is obtained
as
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W, = [cidg = h o dt

2n
_c 22
= 8%0 q* d(wt)

2n
= E\NS.— cos? (ot + ) d(wt)
0

= wculw
After substituting for ¥ from (8.51) and with ¢ = k2{/w,, we obtain
w, =3 2], (8.55)

k (1 — o¥wl)? + Qlw/w,)?

On comparing (8.54) and (8.55), we conclude that the energy supplied by
the exciting force per cycle is exactly balanced by the energy dissipated by
damping force per cycle.

8.4.4 Forced Vibrations under Periodic Force

The exciting force considered so far has been simple harmonic. Now, we
generalize the results when the exciting force is periodic as shown in Fig. 8.11.

F(t)

A2\ :

g
g

PERIOD T

i SR,

Figure 8.11 Periodic force.

Employing Fourier series expansion for this force, we get
F@®) = a, sin ot + b, cos wt + a, sin 2wt + b, cos 2wt
+ .-+ + a,,sin mwt + b, cos mwt + - .- (8.36)
where a,, and b,, are the coefficients of the Fourier series expansion and it has
been assumed that the constant term b, = 0. Here, w is the fundamental fre-
quency. Since,
a, sin mwt +- b,, cos mwt = f,, sin (mwt + a,,) 8.57)
where f,, = [a2 + b2]'/? and a,, = tan~1(b,,/a,,), it follows that
F(t) = f, sin (@t + &;) + f5sin Qeot + &,) + - -+ + fn sin (mawt + a,) + - - -
(8.58)
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Since we are dealing with the vibrations of a linearized system, superposi-
tion is valid and we can consider each term on the right-hand side of (8.58) as
a separate forcing function. The steady-state vibration displacement is obtained
by adding the responses due to each term of (8.58) acting separately. Hence, it
follows that

gu(t) = uy sin(wt + & + yy) + uy sin ot + &, + y,) + - -
+ u, sin (mwt + o, + w,) + --- (8.59)
where from (8.49) and (8.50), we have

— Sl k
Up = [0 = (mw)?w?)? T Clmajw,) " (8.60)
Vo = ISDLE:‘ m=12,... ®.61)

1 — (mo/w,)”

Hence, the steady-state vibration displacement is also periodic with the
same period as the force but with a different amplitude and there exits a phase
lag. The energy supplied by the periodic force per cycle can be determined as
follows. The work done by the component f,, sin (mwt -+ a,,) on the component
u, sin (nwt + &, 4 y,) per cycle can be expressed as

27
Wom=n \sz; sin (mowt + a,,) cos (nwt + o, + w,) d(wt)
0
Expanding the sine and cosine terms in the expression above and integrat-

ing, it can be shown that
w . =0, n#*m

Wonm = Mf i sin (0, — ¥,,) n=m (8.62)
Hence, the work done by the force component f,, sin (mw? + «,,) on the dis-

placement component u, sin (newt +- &, + y,) per cycle is zero when n # m.
The total work done per cycle is

W= 3 mfou,nsin (t, — W) (8.63)
m=1

By considering the work done per cycle by the damping force, it can be
shown that the work dissipated per cycle is also given by (8.63) and the energy
per cycle is therefore balanced.

8.4.5 Forced Vibrations: Frequency-Domain Method

We now discuss an alternative method for the analysis of forced vibrations
of a single-degree-of-freedom damped system. This method, which is closely
related to the time-domain method discussed in the foregoing, is a frequency-
domain method and is based on the concept of transfer function and harmonic
response function. We define an ordinary differential operator D as D = d/dt.

Then the equation
mg + c§ + kq = F() (8.2)
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may be written as (mD? + ¢D + k)q = F(t), which may also be expressed as

B 1
90= T T DTk

In (8.64), g(?) is called the output, F(¢) the input, and a transfer operator G(.D)
is defined by

F@) (8.64)

1
mD? + ¢D + k

Taking the Laplace transformation of (8.2) and letting the symbol (*)
over a variable denote its Laplace transform, we obtain

ms*q + esg + kg —= msq(0) - ¢(0)] + cq(0) + F(s)
and it follows that

G(D) = (8.65)

4oy — Smg(0) + mg(0) + cq4(0) 1 o
4() = ms* +cs + k T s + s+ k Fis) (8.66)
If the initial conditions are zero [i.e., g(0) = ¢(0) = 0], we get
o 1 .
4(s) = st L os Tk F(s) 8.67)

where a transfer function G(s) is defined by

1

ms® +e¢s + k

On comparing (8.65) and (8.68), we note that a transfer function is obtained
by replacing the operator D by s in the transfer operator and it relates the
input and output in the Laplace domain as in (8.67). This equation implies that
all the initial conditions are zero or that the initial conditions have not been
accounted for. Quite often, the transfer operator of (8.65) is called the transfer
function even though operator D has not been replaced by s. Of course, a
transfer function can be defined only for linear time-invariant equations of
motion. There is a close relationship between the state transition matrix and the
transfer function as shown in the following. Choosing state variables as x; = ¢
and x, = ¢, (8.2) is written as

G(s) = (8.68)

. 0 1 0

X1 X

. w“ k c + 491 ¢ F@) (8.69)
*2 “m T om |2 ‘m

or
{x} = A{x} + {B}F
The solution of (8.69) may be written as
(@) = @O + | @ — {BIF@) dr
and in the Laplace domain this equation becomes
{(25)} = DG)x(0)} + D) BIE(s) . (8.70)
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If we are interested in observing only the displacement, then we define a
matrix E such that

¢~ LEJ =11 o™} 3.71)
and from (8.70), we obtain
4(s) = LEJ®(s){x(0)} + LE |D(s)(BIE(s)
In case all initial conditions are zero, it follows that
4(s) = LE J®(s)(B}E(s)
Now,
0
LEI®G){B} = [1 0J(sT — A 1
m
|
= (8.72)

ms? +cs + k

It is seen that (8.72) is identical to (8.68) and hence for a single input-single
output system, the transfer function can also be defined as G(s) = _,m._mv@xww.
The input-output relationship is represented in the form of a block diagram as
shown in Fig. 8.12. Steady-state forced vibrations are now analyzed by employ-
ing the transfer function. However, in order to be able to generalize the results
to multiple-degree-of-freedom systems at a later stage, here we consider a
general scalar differential equation

Ab: ..T @almbalm IT e ..T WOVQANV = Aaibi ..T Qilmbiln IT e ..T QOVNM.ANV
(8.73)

F(s) q(s)
—] G(s) —
Figure 8.12 Block diagram of input-

output relationship.

where the coefficients a’s and b’s are constants and n > m. Here, the transfer
function becomes

— QSMS IT Qilmhilm ..T Ut ..T Qo
Gs) = "+ b, 5"+ e by (8.74)
and the characteristic equation is
S" 4 by 5"V oo by =0 (8.75)

We now prove that when the exciting force F(f) = f, sin wt and all the
roots of the characteristic equation (8.75), which are in fact the eigenvalues of
matrix A in the state-variable formulation, have negative real part, then for
steady-state vibration,

qss = u sin (ot + y)

i
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where u = f, | G(jw) | and y = AG(jw). Taking the Laplace transformation of
(8.73) with F(¢) = f, sin wt [i.e., F(s) = fyw/(s* + ®?)], we obtain
4(s) — I(s) + a,s™ -+ --- + a, fow
S F by o by 5 b8 T s by s+ @F

where I(s) is a polynomial in s due to the initial conditions. Letting
"+ b,y s Fb)=6+r)s+r)...(s+r,), where —r,, —r,,
..., —r, are the roots of the characteristic equation and employing partial-
fraction expansion, we get

sy — | €1 Cn
QQIT+J+ +,ﬂ+L
|\ﬂ~ \ﬂ:
Hrgn T

where ¢’s and k’s are constants of the partial-fraction expansion. Since all the
roots of the characteristic equation have negative real parts, we obtain
lim,... c;e”™ = 0. Hence, it follows that

\ﬁ=+~ \ﬂ:+~ g
T3 —jo T s+ jo

. (kK k
— — 1 n+1 n+2
gult) = lim,_... ¢(r) = L A,ﬂ el \.ev (8.76)
where the symbol L~! denotes the inverse Laplace transformation. Now,
— 1 _ Soo g
Kt Ihmww Tu Jo)G(s) s — jo)(s + jw)
_ r Gljw)
—Jor6ianies
= 21 G(jo) e
where y = AG(jw). Also,
ks = L521Glj) e
Hence, (8.76) yields
. . N.ZEI.SV NI:STTSV
Quul.\.o_QA.\ev__H N.\ - N.\ Q
= fo| G(jw)|sin (@t + y) (8.77)

Hence, the amplitude of steady-state vibration u = f, |G(jw)| and the
phase angle between the vibration and the exciting force is AG(jw). The func-
tion G(jw) which is obtained by replacing the operator D by jw in G(D) or by
replacing s by jw in G(s) is called the harmonic response function. Of course, a
condition for the harmonic response function to exist such that it may be used
as in (8.77) is that all the roots of the characteristic equation have negative real
part. A method for checking whether this condition has been satisfied, without
actually determining the eigenvalues, is the Routh criterion, which is discussed
in Chapter 9.
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Now, for the damped single-degree-of-freedom system that we have been
considering, the transfer function is defined by (8.68), which may be expressed as

1/k
(l/wp)s* + 2/w,)s + 1
Both roots of the characteristic equation of (8.78) have negative real

parts. Hence, substituting je for s, the harmonic response function is obtained
as

G(s) — (8.78)

1k
(1 — o¥w)) + (j2w/w,)

The steady-state vibration of this system given by (8.45) may be expressed

G(jw) =

(8.79)

as
4 = fo|G(jw) | sin (w1 + AG(jw))
- folk .
= (0= ool + Qlajoy e Sn @ +¥)
where

_ 2€w/w .
- 1 n__) —
7 tan A_ — SN\SMV 2G(jw)
This result as expected is the same as that given by (8.49) and (8.50).
When an exciting force is periodic but not simple harmonic, the result expressed
by (8.60) and (8.61) also follows from the harmonic response function G(jmw).

8.5 BODE DIAGRAM FOR FREQUENCY RESPONSE OF
DAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS

In the foregoing, it has been shown that for the steady-state vibrations of stable
dynamic systems, the amplitude ratio u/f, = | G(jw)|, where u is the amplitude
of the vibration displacement, f; the amplitude of the sinusoidal exciting force,
and G(jw) the harmonic response function. Also, the phase angle y between the
vibration and the force is given by ¥ = X G(jw). Hence, a plot of | G(jw) | and
AG(jw) versus the frequency w is very useful for the analysis of steady-state
vibrations. One method of representing this information is shown in Figs. 8.8
and 8.9. We now present an alternative form called the Bode diagram.

It consists of two plots,log,,| G(jw)|and the phase angle A G(jw), both
plotted versus w, on a log scale, using semilog graph paper. The Bode diagram
has several advantages for multiple-degree-of-freedom systems. Since the
frequency scale is logarithmic, a larger range of frequencies can be represented
than that which would be possible by using a linear scale. The plotting of
log,, | G(jw)| can be done very simply by using straight-line asymptotes, as
shown shortly. It is common practice to plot 20 log,, | G(jw)|in decibels (dB)
instead of log,, |G(jw)|. The procedure will be clarified by considering the
following examples.
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Example 8.5

We consider the single-degree-of-freedom damped system defined by (8.2). It has been
shown that the transfer function relating the displacement to the force is given by
(8.68), and the harmonic response function by (8.79) for steady-state vibrations. Hence,
we have

20 logs | G(j)] = 20 log 1 — S log ? _ GSPUN - Awmeﬁ (8.80)
AGGo) = Ak — A1 - 25) +/22]
0 tan-t A$V (8.81)

It is seen that both 20 log | G(jw)|and A G(jw)are obtained by adding the con-
tributions of the factors that constitute G(j ). In both expressions, the contribution of
a term on the denominator of G(jw) has a negative sign. First, we consider the con-
tribution of the constant term, 20 log 1/k and X 1/k. The plot is shown in Fig. 8.13 for
k = 0.1, where 20 log (1/0.1) = 20 dB and %1/0.1 = 0 for all frequencies.

a8 ]
MAGNITUDE
20
10 90°
< i3
g o &
wi
(@) ()]
[aV]
-10 <
¥ N
20 0°
0.l 10 10 100
w, RAD/SEC.

Figure 8.13 Bode plot for 1/k where k = 0.1.

Both the magnitude and phase angle curves are straight lines. The slope of the
magnitude curve is O dB/decade. A decade is the horizontal distance on the frequency
scale from any value of @ to 10 times @. Thus, w = 3 to @ — 30 is a decade. Now, we
consider the contribution of the second term, namely,

o [(1 - )+ (52

—tan™! ANMNF\MMWV

When w/w, < 1, the magnitude expression becomes (—20/2) log 1 = 0. This
is the equation for the low-frequency asymptote, which is a horizontal straight line
whose slope is 0 dB/decade. When w/®, > 1, the magnitude expression becomes
(—20/2) log (w/w,)* = —40log (@/w,). This is the high-frequency asymptote, which
is a straight line whose slope is —40 dB/decade. The low- and high-frequency asymp-
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totes intersect at w/w, = 1, where the exact value of the magnitude expression be-
comes —20log2{. When w/w, — 0, the phase angle tends to zero, and when
w/w, — oo, the phase angle tends to —180°. For w/w, = 1, the phase angle is —90°.
The plot is shown in Fig. 8.14 for various values of the damping ratio { and w, = 10
rad/s. The frequency @ = @,, where the asymptotes intersect, is called the corner
frequency. The Bode diagram for expressions (8.80) and (8.81) can now be completed
by adding the diagrams of the two individual factors shown in Figs. 8.13 and 8.14.

dB
20 — -
T TR
" LOW FREQUENCY \“w\\./ o
pa 1
—_ ASYMPTOTE O dB/DECADE \“\\n!.ﬂ/ 02
?_\I O I | =11
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o /1 "
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T 20 e U
o
e PHASE NN HIGH ©
i SRR Freaueney N w
! RN ASYMPTOTE o
= N - 40 4 /DEC. AN o
g - -90° %
g -40 o =
g [
e £=0.05 S
=0, T
SN ]|
_ _ ™= -180
0.2
wn
o.l 10 10 100
w, RAD/SEC.

Figure 8.14 Bode plot for where w, = 10.

1
1 — w2fwE + j20(w/w,)
This diagram is shown in Fig. 8.15 for k = 0.1, @, = 10 rad/s, and { = 0.05. In
practice, it is not necessary to first draw the Bode diagram for the individual factors
and then obtain the overall Bode diagram by adding the individual diagrams. The
overall Bode diagram is drawn by utilizing the asymptotes, their slopes, and the corner
frequencies.

8.5.1 Identification from Experimental Frequency Response

In the earlier part of this chapter, we have discussed a method for the
identification of natural frequency and damping ratio of a single-degree-of-
freedom system from the experimental response to a step or impulse input.
Another method of identification is from the experimental frequency response,
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Figure 8.15 Bode diagram of G(jw) of Eq. (8.79).

which is applicable to multiple-degree-of-freedom systems. The experimental
procedure employs a force generator to provide sinusoidal excitation to the
system. The amplitude ratio u/f;, and the phase angle y between the displace-
ment and force waveforms are measured for different frequencies. The informa-
tion is then plotted in the form of a Bode diagram. For example, let us suppose
that Fig. 8.15 represents experimental frequency-response data. The actual
magnitude curve would have no corner. Hence, the corner frequency is deter-
mined by fitting asymptotes to the experimental data. From the corner fre-
quency, we can identify the natural frequency as @, = 10 rad/s. The overshoot
of the magnitude curve from the corner is +20 dB. By comparing this to a
standard plot given in Fig. 8.14, we identify the damping ratio as { = 0.05.
Also, at @ = 0.1 rad/s, 20 log| G(jw)| = 20 dB. Now, at w = 0.1 rad/s, w/w, =
0.01 and the contribution of the second term in (8.80) is negligible. Hence, at
w = 0.1 rad/s,
1

20 log| G(jw)| = 20 log - — 20 dB

It follows that 1/k = 10 and the spring constant is identified as k = 0.1.
Example 8.6
In Example 8.4, the relationship between the exciting force and displacement is given by
mi 4 cf + kq = F
and the force transmitted to the foundation by
Fr=cq + kq

These two equations can be expressed-in the form of a block diagram as shown
in Fig. 8.16. The transfer function relating the exciting force to the transmitted force
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A A A
F(s) _ q(s) sk Fr(s)

ms2sics+ k

Figure 8.16 Transfer function between the exciting and transmitted forces.

is obtained as
cs + k _ QLiw,)s + 1
ms* +cs + k= (1jo})s? + QL/w,)s + 1
The roots of the characteristic equation of this transfer function have negative
real parts and the harmonic response function becomes
(j2lwjw,) +1
8.
1 — wrwl) +) Lo, (8.83)
We now draw a Bode diagram for this harmonic response function for the
damping ratio { = 0.05. Hence,

20 log | G(j)] = 2 log ?S WVN +1] - Diog ? _ %VN + Ao._mmvd (8.84)

G(s) = (8.82)

G(jw) =

Y =1 mwvl l_Ao._AS\SLv
AG(jw) = tan AO.H o, tan T— 0ljw? (8.85)
First, we consider the contribution of the first term in (8.84) and (8.85). For
0.1 (w/w,) K 1, we have
20 w\? 20
Dlog ?Sﬂv +1]=Zlog1 =0
This is the low-frequency asymptote which is a horizontal straight line whose
slope is 0 dB/decade. For 0.1(w/w,) > 1, we get
20 SVN 20 A m VN _ «
2log ?Sﬂ +1] =S log (0.1 57) = 201log 0.1 2
This is a high-frequency asymptote whose slope is 20 dB/decade. The low- and
high-frequency asymptotes intersect at the corner frequency 0.1(/®,) = 1, where the
exact value of the amplitude is 20/2 log (1 + 1) = 3 dB. The Bode diagram for this
first term is shown in Fig. 8.17, where normalized frequency w/w, is employed. In
case this first-order term was on the denominator of the transfer function, the slope of
the high-frequency asymptote would be —20 dB/decade and the phase angle would be
negative, varying from zero to —90°. The Bode plot of the second term in (8.84) and
(8.85) is similar to that shown in Fig. 8.14, the corner frequency being w/w, = H
Combining these individual plots, the overall Bode diagram for (8.84) and (8.85) is
shown in Fig. 8.18, where normalized frequency w/®, is employed. It is seen Em.ﬂ .».oﬂ
w/w, > 1, the amplitude of the transmitted force becomes very small and the oxo::mm
force is filtered out. In order to study the effect of damping ratio { on the transmis-
sibility and filter characteristics, now let { = 0.25. From (8.83), we then obtain
2 2\ 2 w 2
20 log | G(j)| = S log ?o.u %v +1] - Diog ? -2 + (05 Qv JREED

n

AG(jw) = tan™1 0.5 % — tan! Agv (8.87)
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Figure 8.17 Bode diagram for jO.1(w/ws) + 1.
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Figure 8.18 Bode diagram for Egs. (8.84) and (8.85).

In order to draw the Bode diagram for (8.86) and (8.87), we need not first draw
the diagrams for the individual factors. The overall Bode diagram is simply drawn by
utilizing the asymptotes, their slopes, and the corner frequencies of (8.86). The first
term in (8.86) is approximated by two asymptotes: the low-frequency asymptote with
a slope of 0 dB/decade and the high-frequency asymptote with a slope of 20
dB/decade, and the corner frequency is 0.5 (@/w,) = 1 (i.e., ®/w, = 2). The second
term is also approximated by two asymptotes with slopes of 0 dB/decade and —40
dB/decade, respectively, and the corner frequency is w/w, = 1. At frequencies below
the first corner frequency, we have 20 log| G(jw)| = 0. The Bode diagram for (8.86)
and (8.87) is shown in Fig. 8.19. .

The effect of the damping ratio on the amplitude of the force transmitted to the
foundation can be seen on comparing Fig. 8.18 with Fig. 8.19. For @ < ®,, the damp-
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Figure 8.19 Bode diagram for Eqs. (8.86) and (8.87).

ing ratio has no effect on the transmissibility. When @ is in the neighborhood of @,,
increased damping causes less amplification. For @ > w,, increased damping has a
disadvantage since it causes less attenuation or less filtering.

Example 8.7

Figure 8.20 shows a seismic mass which is mounted on a frame with linear spring and
damper as a displacement transducer. The purpose is to measure the vibration dis-
placement y(z) of the frame from the relative displacement g(r) of the mass.

qlt)

x
AAAANA
VWW
(3]
-

[ |
M y(t) Figure 8.20 Seismic mass displacement

transducer.

The displacement ¢(¢) is measured relative to the frame. Hence, the equation of
motion of the mass becomes
mG+J) +cg +kg=0
or
mg + ¢4 + kg = —mp (8.88)
The transfer function relating the displacement y to the relative displacement ¢
is shown in Fig. 8.21 and is

_ —s2/w?
¢ = /w2)s* + Ljw,)s + 1 (8.89)
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Y —ms? Qq

Figure 8.21 Block diagram of displace- msZ+c 5+ k

ment transducer.

After checking that the roots of the characteristic equation have negative real
parts, the harmonic response function is obtained by substituting j for s and is

LN w2/w?
GO = T = wtwl) + j2loja, (8.90)

From (8.90), we obtain

20 log | G(je0)| = 40 log - — Diog ? - MMVN + (2t %E 8.91)
AG(j@) — —tan~? Ak%,eqv (8.92)

The Bode diagram of (8.91) and (8.92) is shown in Fig. 8.22. The first term in
(8.91) is a straight line with slope of 440 dB/decade, and for w/w, = 0.1, its value is
—40 dB. For w/w, < 1, the value of the second term in (8.91) is zero and it is approxi-
mated by two asymptotes with corner frequency @ = @,. It is seen from Fig. 8.22 that
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Figure 8.22 Bode diagram for Egs. (8.91) and (8.92).

for @ > w,, the frequency response becomes flat. Hence, a seismic mass can be used
as a vibration displacement transducer only for frequencies greater than its natural
frequency. The natural frequency may be decreased by increasing the mass and
decreasing the spring constant. But then the transducer would become very bulky. A
better approach might be to measure the acceleration and integrate it twice to obtain
the displacement.

In this example, for steady-state vibrations where y = y, sinw¢, we have ¢ =
usin (wt + ). It is seen from Fig. 8.22 that the amplitude ratio u/y, = 1 for w/w,>> 1
and u/y, = w?*/w? for w/w, K 1 (i.e., the amplitude « is a function of the frequency).
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Example 8.8

This example illustrates the use of experimental frequency-response data for system
identification. The system of Fig. 8.10 was externally excited by a sinusoidal force
F = f; sin wt and the steady-state response observed was g = usin (wt + ). The
experimental frequency response data are given in the following table. Identify the

transfer function of the system.

Frequency,
@ (rad/s) 0.2 0.25 0.32 0.4 0.5 0.55 0.65 0.8 1 2

20log .\kawv —252 —244 239 -—-234 —241 —252 —28.0 —32.0 —35.6 —49.1
0

Phase angle,
v (deg) —20 30 -—41 —62 —9% —104 —123 -—140 —152 —166

The Bode diagram of the response data is shown in Fig. 8.23. The magnitude
curve exhibits an initial slope of zero and a final slope of —40 dB/decade. The initial
phase angle tends to zero and the final phase angle to —180°. It is apparent that the
break in the initial zero slope is due to a quadratic term on the denominator. Thus the
transfer function is of the form

= 1/k 8.93
¢ = Hjobs F eloys T 1 (8.93)
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Figure 8.23 Bode diagram of experimental data of Example 8.8.

The phase-angle curve also confirms this model. Drawing the best asymptotes
to the experimental magnitude curve, the corner frequency is obtained as @ = o..m
rad/s. Hence, the natural frequency is @, == 0.5 rad/s. The phase angle of . —90° at this
frequency also confirms this value of the natural frequency. On comparing the over-
shoot of the magnitude plot at the corner frequency to that of the standard c_ow shown
in Fig. 8.14, it is seen that the damping ratio { = 0.4. Now, the value of the stiffness &
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in (8.93) is to be determined. From (8.93), we obtain

20 log | G(jeo)| = 20log 1 — Dog ? - m% + AA%%S (3.94)

At @ = 0.1 rad/s, from Fig. 8.23 we obtain 20 log |G(jw)| = —25.8 dB. Substituting
these values in (8.94), it follows that 20 log 1/k = —26.03 dB (i.e., k = 20).

8.6 MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS

When the number of degrees of freedom for a dynamic system is more than 1,
we obtain as many natural frequencies and modes of vibration as there are
degrees of freedom. In the remainder of this chapter, we discuss the general
procedure of analysis for multiple-degree-of-freedom systems. The equations of
motion can be formulated by employing the procedures discussed in Chapters 3
to 5. For holonomic systems with » degrees of freedom, the Lagrange equa-
tions are

%@I@lmwn W i=1,....n (8.95)
where L is the Lagrangian and 0, is the generalized force in the ith direction due
to the work done by the nonconservatives forces, both frictional and externally
applied. We assume that the nonlinearities in (8.95) are analytic functions of
their arguments and that the frictional forces are viscous, for which a Rayleigh
dissipation function 4{¢}"[C]{4} can be defined. Linearization of the equations
for small displacements about an equilibrium then yields

(M1{g} + [Cl{g} + [K}{g} = {Q} (8.96)

where {Q} now denotes only the externally applied forces. In (8.96), [M], [C], and
[K] are the n X n mass, damping, and stiffness matrices, respectively. For the
time-invariant systems considered in this chapter, these matrices are constant.
Another formulation that is convenient in some cases is the state-variables
formulation, where (8.96) is expressed as a set of 2 first-order differential equa-
tions. For this purpose, we note that (8.96) is unchanged when it is expressed as

{4} = —[M]'[Cl{g} — [M]'[K]{q} + [M]-*{Q} (8.97)
We rewrite this equation in the form
1 I C N U ] [ O
@l o el T il 60

The first set of » equations in the foregoing represent an identity (i.e.,
{g} = {4} and the second set of n equations represent (8.97). We now choose
phase variables as state variables and define (2n x 1) vector {x}, 2n X 2n)
matrix [A4], and [2# X n] matrix [B] as
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Equation (8.98) is now expressed as a set of 2 first-order equations in
state-variable form as

{x} = [4]{x} -+ [BHQ} (8.99)

Considering the set of generalized coordinates as output, we define a (n X 2n)
matrix E such that

{q} = [E]{x} (8.100)
where
1 0 0 -.- 0 --- 0 O
o150 --- 0 .-+ 00
o 01 --- 0 .« 0 0
[E] =
(nx2n) .
000 - 1 -+ 0 0

It is noted that (8.99) and (8.100) represent the generalization of (8.69) and
(8.71) from a single-degree- to a multiple-degree-of-freedom system. For the
analysis of steady-state vibrations of damped multiple-degree-of-freedom sys-
tems, we also use the harmonic response-function matrix, which is obtained
from the transfer function matrix by substituting jw for s or for the operator
d/dt in stable systems. Since in stable systems, the response due to initial condi-
tions decays to zero and is not reflected in steady-state vibrations, we Laplace-
transform (8.96) assuming zero initial conditions on {g} and {¢}. It follows that

[s2[M] + s[C] -+ [K]){d(s)} = {O(s)} (8.101a)
(G(s)} = [s}[M] + s[C] -+ [K]]"HO(s)} (8.101b)

Hence, the n outputs {g(s)} are related to the » inputs {O(s)} by the n X n
transfer function matrix

[G(s)] = [s*[M] + s[C] + [K]™! (8.102)
and the relationship is represented in the form of the block diagram shown in

Fig. 8.24. In case the state-variable formulation has been employed, this same
transfer function matrix can be obtained from (8.99) and (8.100) as follows. It

{a(s)) @esn
[G(s)] > . .
Figure 8.24 Block diagram for input—

output relationship.
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has been shown in Chapter 6 that the solution of (8.99) is given by

(0} = DO} + [ @ — MBI} df (8.103)

In the Laplace transform domain, the foregoing equation may be written

as
{%(s)} = B(s){xo} + DG)BHO()} (8.104)
and from (8.100) it follows that
)} = [EI®(){x,} + [EI®GBYOG)) (8.105)

For steady-state vibrations of stable systems, the first term on the right-
hand side of (8.105) will decay to zero with time and we would obtain

{4(s)} = [E)DG)BIO(s)} (8.106)

Since @A@ = (s — A)™!, on comparing (8.106) with (8.101b), it is seen
that the transfer function matrix can also be expressed as

[G(s)] = [s[M] + s[C] + [K]]™" = [E](sT — A)~'[B] (8.107)

The formulations expressed by (8.96), (8.101b) and (8.99) will be employed
in the following two sections for the analysis of vibrations of multiple-degree-
of-freedom systems.

8.7 UNDAMPED MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS
8.7.1 Analysis of Free Vibrations by Modal Decomposition

It was pointed out earlier in this chapter that undamped conservative
systems are not encountered in practice, with the exception of the area of
celestial mechanics. However, it is seen from previous sections that in lightly
damped systems, the natural frequencies of the undamped system do not differ
appreciably from the ones of the damped system. It is shown in this section
that the values of the natural frequencies can be easily determined knowing the
values of the mass and stiffness matrices. In practice, the values of the mass
matrix are usually known and the values of the stiffness matrix can be approxi-
mated from strength of materials. The determination of the values of the damp-
ing matrix usually requires time-consuming experimentation such as experi-
mental frequency response. Hence, our purpose in analyzing free vibrations of
undamped systems in this section is to determine the natural frequencies by
neglecting the damping matrix in lightly damped systems.

The dynamic response analysis of a freely vibrating system consists of
determining the natural frequencies (i.e., the eigenvalues and the corresponding
free vibration mode shapes). The mode shapes represent n independent displace-
ment patterns. Either the formulation of (8.96) or the state-variable formulation
of (8.99) and (8.100) could be employed for the analysis after setting matrix
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[C] = 0 and {Q} = 0. The formulation of (8.99) leads to a complex eigenvalue
problem (in this case the eigenvalues are in fact purely imaginary since there is
no damping). Since the coefficients of matrix [4] are real, there exist complex-
conjugate pairs. The formulation of (8.96) with [C] = 0 leads to a real eigen-
value problem when certain restrictions are satisfied and hence is preferable.
The restrictions are that matrices[M]and [K] be symmetric and positive definite.
This requires that in the linearized system, the kinetic and potential energies be
quadratic functions and that

T=314][M)}g} >0 for{g}+*0

U=4lql[Kl{g} >0  for{g}+#0

It follows from Maxwell’s reciprocal theorem that matrix [K] is symmetric

but matrix [M] need not always be symmetric. When these restrictions are not
satisfied, the state-variable formulation (8.99) can be employed. Here, we em-

ploy the formulation of (8.96), and the equations of motion for the free vibra-
tions of a conservative system are represented by

[M]}{g} + [Kl{q} = {0} (8.109)

Letting [H] = [M]™'[K], where [H] is called the dynamical matrix, (8.109)
is represented as

(8.108)

{4} + [Hl{q} = {0} (8.110)
We seek a harmonic solution of the form
{g} = (v} sin (w,t + W) (8.111)

where {v} is an eigenvector or modal vector, w, a natural frequency, and y a
phase angle. Substituting for {g} from (8.111) in (8.110) and noting that for a
nontrivial solution sin (w,t + w) # 0, we obtain

[wi[1] — [H]{v} = {0} (8.112)

Letting A = w?, where 4 is an eigenvalue, (8.112) is expressed in the form
of an eigenvalue problem as

[AL1] — [HT}e} = {0} (8.113)
For a nontrivial solution of this equation, it follows that
det[A[/]—[H]] =0 (8.114)

This is the characteristic equation which is also called the frequency equation
when w? is used instead of A. Since matrices [M] and [K] are assumed to be
positive definite, matrix [H] is positive definite and its n eigenvalues are all real
and positive. The n natural frequencies are given by ,, = A/, fori =1,2,...,
n. The eigenvector {v,} corresponding to an eigenvalue 4, is also called a modal
vector and corresponds to a particular mode shape of vibration. We now show
that the eigenvectors corresponding to two distinct eigenvalues are orthogonal
with respect to the mass and stiffness matrices. For two distinct eigenvalues,
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from (8.113), we obtain

MM v} = [K]{v} (8.115)
MM} = [K]{v)} (8.116)
Premultiplying (8.115) by | v; | and (8.116) by | v, |, it follows that
Ao, [IMT{v} = |, J[K]{w.} 8.117)
AlvdMIw} = v JIK]{w;} (8.118)

Since matrices [M] and [K] are assumed to be symmetric, we subtract the
transpose of (8.118) from (8.117) and obtain

(4 — v lIMIfw} =0, i)
Since 4; # 4, it follows that

(v M]v} =0, i+ (8.119)
By substituting the result of (8.119) in (8.117), it can be easily verified that
Lo, |[Kl{v:} =0, i+ (8.120)

It is seen in Chapter 6 that only the direction of the eigenvector can be
determined from (8.114) and its length is arbitrary. Each eigenvector can be
normalized such that

Lv: [[M]{v;} = 1 (8.121)

The eigenvectors belonging to two different eigenvalues are then mutually
orthonormal. We now assume further that the eigenvalues of (8.113) are dis-
tinct. It rarely happens that any two or more natural frequencies are identical.
It is then seen from Chapter 6 that the n eigenvectors of (8.113) are linearly
independent and we can define a nonsingular similarity transformation matrix
[P] as
[P] = [{vi}, 122}, - - -, {w,]] (8.122)
This similarity transformation matrix [P] is now employed to uncouple the

equations of motion (8.109) by defining a new set of generalized coordinates
such that

{g} = [P){»} (8.123)

Equation (8.109) is then converted to
[M][PI{5} + KI[P){y} = {0} (8.124a)

Premultiplying (8.124a) by [P]7, we obtain
[PTIMI[PI{7} + [PIIK]I[P){y} = {0} (8.124b)

It can be seen from (8.121) and (8.115) that [P]*[M][P] = [I], where [I]is
an identity matrix, and that [PJ'[K][P] = A, where A is a diagonal matrix with
A; = w}, along the main diagonal. Hence, in the new generalized coordinates
the equations of motion (8.124b) are uncoupled and we obtain

b + iy, = 0, i=1,...,n (8.125)
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The solution of (8.125) can be written easily as
yi(t) = b, sin (,;t + ) (8.126)

where the constants b, and w,; are evaluated from the two initial conditions
7(0) and 7,(0) which can be obtained from the initial conditions {g(0)} and
{4(0)} from (8.123). The new set of coordinates { y} are called normal generalized
coordinates, a name that is derived from the Jordan normal form. The solutions
given by (8.126) represent normal modes of vibration. If free vibration in the
generalized coordinates {g} is required, it can be obtained from {g} = [P]{y}.
The similarity transformation matrix [P] is also called the modal matrix. Since
free vibrations of conservative systems are not encountered in practice, it is not
necessary to obtain the solution. It is sufficient to determine only the natural
frequencies from the characteristic equation (8.114).

Example 8.9
In an overhead crane, a truck of mass m, is resting at the center of a beam with stiffness
k,. The truck is lifting a mass m, through a cable of stiffness k;. We wish to determine
the natural frequencies of this system. We assume a two-degree-of-freedom system.
The system is shown in Fig. 8.25 and its conceptual model in Fig. 8.26. The
equations of motion can be derived by employing Newton’s law or Lagrange equations.
The free-body diagram is shown in Fig. 8.27 and the equations of motion of the un-
forced system are given by

(- |
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m, Figure 8.25 Overhead crane lifting a
mass.
Kiqy ciq
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m,
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i o
ma G
my mo
92
Az
Figure 8.26 Conceptual model of Figure 8.27 Free-body diagram of

overhead crane lifting a mass. system of Fig. 8.25.
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mg; + (c1 + c2)gy + (ky + kydgy — ¢y — kogy =0
mydy + c2gs + kaqy — €291 — kg0 =0

which can be represented in the matrix notation as

—V\S_ ogﬂm_v 4 —r\n_ + ¢ |ﬁ~g AQ.HV 4 —r\\a_ + k&, |\a~gﬂ§v HAOV (8.127)
0 myllg, —C3 (4] P —k; .23 gz 0

The mass, damping, and stiffness matrices are obvious from (8.127). The values
of the mass matrix can be determined easily. The values of the stiffness matrix can be
evaluated from strength of materials. For a simply supported beam loaded at the
center within elastic limits, we obtain k, = 48E,I,/L} and for the cable loaded in
tension, k;, = A.E./L.. The subscripts b and ¢ denote the beam and cable, respectively.
The evaluation of the damping matrix would require experimental data. However, it
is known that for this system the damping is very small. Hence, in (8.127), we set the
damping matrix to zero and obtain approximation to the damped natural frequencies
from the natural frequencies. From (8.114) the characteristic equation is obtained as

ki + ky + Am, —k, o
—k, ky + Am,
or
mimyA? + (miky + mok, + myk)A + kik, =0 (8.128)

In order to obtain numerical values, let m; = 28.49 Ib-sec?/in., m, = 6.83 Ib-
sec2/in., k; = 2000 1b/in., k, = 42.66 1b/in. The numerical values of A, and A, that
satisfy (8.128) can now be determined numerically and the two natural frequencies are
W,; = AA; = 1.25 rad/s and w,, = )\Mm = 19.17 rad/s. In vibration analysis, the
lowest natural frequency is called the fundamental frequency. In the normal generalized
coordinates the equations are

Ji+ @iy =0
Vs +twky =0
The normal modes of vibration are y, = b, sin (W, ¢ + ;) and y, =

b, sin (W,,t + ¥,), where by, by, (, and ¥, are obtained from initial conditions
¥1(0), ¥2(0), ¥1(0), and y,(0).

Example 8.10

An automobile suspension system is shown in Fig. 8.28. If m and [ are the mass and
moment of inertia of the sprung mass, develop the equations of motion and calculate
the natural frequencies of free vibration.

The natural frequency of vertical motion of the unsprung mass is much higher
than the natural frequency of the sprung mass. At sufficiently small frequencies, the
disturbances are transmitted directly to the sprung mass and the degrees of freedom of
the unsprung mass can be neglected.

Assuming the sprung mass to be rigid, two degrees of freedom are assigned: (a)
vertical bounce ¢ and (b) pitch @ (Fig. 8.29).

Considering small displacements, the translation at the front and rear suspension
points are (g — L,0) and (g + L.6). .

The free-body diagram for the system is shown in Fig. 8.30. Summing up the
forces and moments, we obtain
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Figure 8.28 Automobile suspension system.
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g-L,8
Figure 8.29 Bounce and pitch degrees
9+L28  of freedom.
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Figure 8.30 Free-body diagram.

mij + @ — L10) + ca@ + Lof) + ki(g — L,6) + ka(g + Lo6) = 0
~%.. + (g +~.N%v~.n —ci{g — h_%vhH + k(g + LOL, —ki(q—L&L =0
Rewriting the foregoing equations of motion in matrix form, it follows that

m 0] (g ¢y + ¢y —ci1Ly Ly | (4
A.. + 2 2 [
0 I % ‘Gaha 4 GNN& GHhH 4 GNN\N
—ky Ly + kL, kLR + kL2 |10 0

The [M], [C], and [K ] matrices are defined from the foregoing equation. In order
to determine the natural frequencies, we let [C] = [0] and obtain

oofg) <onfy - )

The characteristic equation (8.114) is obtained as
2 ﬁi og B ﬁ ki + k, —k L, + »NNQ
0 I —kyL, + koL, kyL} +k,L%
Expanding the determinant in the foregoing equation, we obtain
mld2 — Ik, + k)A — mlk,L? + ko, L3)A + (ky + ko) (ki L} + k,L3)
— (k2L, — kiL)* =0

det =0
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The two roots A, and 4, correspond to @2 and @2, respectively, and are given by

1 ;\S +ky | kL3 + K, hwv
2 m 1

. AMA\S +ky kL3 x~T \anhwvw n Ak, L, — \SN\_VNW_BH_

m - ml

0, w2 = +

In practice, the natural frequencies @,; and ®,, are in the range 1 to 2 Hz.
However, in this example, intentional damping is introduced by means of the shock
absorbers and hence we can expect the damped natural frequencies to differ apprecia-
bly from the undamped natural frequencies that have been evaluated. For a damped
system, the characteristic equation and the determination of the damped natural
frequencies are discussed in the following section.

8.8 FORCED VIBRATIONS OF DAMPED MULTIPLE-
DEGREE-OF-FREEDOM SYSTEMS

8.8.1 Forced Vibration Analysis by Modal Decomposition

In this section we discuss two methods for the analysis of forced vibrations
of damped multiple-degree-of-freedom systems. The first method, which is
discussed next, involves modal analysis; the second method, which is discussed
later, employs the harmonic response function. The method of modal analysis
described in the preceding section does not generally apply to damped systems.
The equations of motion cannot be uncoupled by the modal matrix of undamped
systems except when the damping is proportional; that is, the damping matrix
[C] = o[M] + B[K], where & and f are constants. The case of proportional
damping is rarely encountered. For this reason, we do not employ the formula-
tion of (8.96) for the modal analysis of damped system but use the state-variable
formulation of (8.99).

The method of analysis is similar to the one employed in the preceding
section. It involves the solution of the eigenvalue problem and the determination
of the eigenvectors and the similarity transformation to uncouple the equations
of motion. The eigenvalues and eigenvectors, however, are complex quantities.
These techniques have been discussed in Chapter 6 in connection with the
determination of the state transition matrix for linear time-invariant systems.
Here, we merely apply the method for the analysis of vibrations. The equations of
motion are described in the form of (8.99) and it is assumed that the exciting
forces are harmonic; that is, Q; = f; sin (w;¢ + «;), where f; is the amplitude,
w, the forcing frequency, and «; the phase angle of the generalized force in the
ith coordinate direction. From (8.99) it is seen that the unforced system is
described by

{x} = [4]{x}
and the corresponding characteristic equation becomes
det[AT—[A4]] =0 (8.130)
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Since [4] is a 2n X 2n matrix where 7 is the number of degrees of freedom,
it follows that there exist 2n eigenvalues. Some of the roots may be real and the
remaining complex-conjugate pairs. A pair of real roots represents an over-
damped quadratic and a pair of complex-conjugate roots an underdamped
quadratic. Steady-state forced linear vibrations will not occur about an unstable
equilibrium state. It is assumed here that all the roots of the characteristic equa-
tion (8.130) have negative real part. It is further assumed here that matrix A has
2n distinct eigenvalues. In such a case, there exist 2n linearly independent
eigenvectors as discussed in Chapter 6.

After determining these eigenvectors, we define a similarity transformation
matrix [P] as

[P] = [{w:} - - - (w2l (8.131)

The state variables {x} are now transformed to normal state variables {y}
by the similarity transformation

{x} =[Py} (8.132)
and (8.99) becomes transformed to
[PI{y} = [AI[P}{y} + [BI{Q}
or
{3} = [PI"'[AI[P1{»} + [P]"'[BI{Q} (8.133)

where [P]"[4][P] = A, a diagonal matrix with the eigenvalues of A along its
main diagonal. The equations in the normal state variables are now uncoupled
and the diagonal state-transition matrix ®(z) for (8.133) can be obtained readily.
Thus, we obtain

D) = PO + [ @ — OPIBIOE} T (8134

Since all eigenvalues of matrix [4] have a negative real part, the part of
the response in (8.134) due to the initial conditions decays to zero with time and
for steady-state forced vibrations, we get

()} = b @ — [P [BIOW)} dr’ (8.135)

where the generalized force vector {Q(f)} is harmonic with different forcing
frequencies. For steady-state forced vibrations, the behavior of the state variables
{x} and generalized displacements {g} is given by

T«EQVW = Hﬁﬁ.ﬁ:@vw
{g.{(} = [EIPl{ys()}

where matrix [E] is defined by (8.100).
For large degrees of freedom systems, the use of a computer becomes a
necessity for the determination of the eigenvalues, eigenvectors, the similarity

(8.136)

o

S

Lt
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transformation matrix, and for the solution of the convolution integral in
(8.135). The same result can be obtained with much less computational effort by
employing the frequency-response method, which is discussed in the next section.
Example 8.11

We consider the forced vibrations of the sprung mass of the automobile of Example
8.10, but now the damping matrix [C] is not neglected and in addition we include
sinusoidal force and moment on the right-hand side of (8.129) given by

a; sin AS_N =+ Ravw

a, sin (Wt + o)

§L

Let the numerical values of —[M] ![K]and —[M]™![C]matrices be given such
that [4] matrix of (8.99) becomes

0 0

—0.25333 —0.00178

[A] = | oo oo - (8.137)
—0.00638 —0.01184 |

From the definition of [B] matrix in (8.99) for this example, we obtain

(=) (=

[B] = (8.138)

1

1

o ¥~ o o

The eigenvalues of matrix [4] of (8.137) have been obtained by Hurty and
Rubinstein [6] and are given by

Ay, Ay = —0.016747 4+ j0.50265
Ay, A, = —0.0062573 + j0.108509

1t is noted that there are two complex-conjugate pairs of eigenvalues. The cor-
responding complex eigenvectors are

1.67595 ~12.61563
J1o6079 | | —0.20743
ik oad =353 [ T7) 105368
0.086550 0.53809
—0.008194 0.007513
| 0203722 | —1252144
ad ad =13 000788 =7 —0.000938
0.134031 0.039707

The complex (4 x 4) similarity transformation matrix [P] can be obtained as in
(8.131) and employed to transform the equations to the normal state-variable equation



276 Linear Vibrations Chap. 8

(8.133). The state transition matrix @(¢) of (8.134) is a diagonal matrix given by
et 0 0 0
0 e O 0
0 0 e 0
0 0 0 et

@) =

This state transition matrix is employed in (8.135) to obtain the steady-state
vibrations of the normal state variables. The steady-state vibrations of x and @ are
then obtained from (8.136). It can be verified that x and @ are real quantities. The calcu-
lations are very lengthy and have been omitted here. It becomes obvious that the
frequency-response method that is covered next is computationally much simpler and
is preferable to the modal decomposition method for analysis of forced vibrations.

8.8.2 Forced Vibration Analysis by the Frequency-Response
Method

We now describe the frequency-response method of analysis of steady-
state forced vibrations. This method employs the harmonic-response function
matrix and is the generalization of the frequency-response domain techniques
discussed earlier for single-degree-of-freedom systems. For a system with n
degrees of freedom and » forcing functions, the transfer matrix is described by
(8.101b) and (8.102). Let A denote the characteristic determinant of the system.
The characteristic equation then becomes

A(s) = det [s[M] + s[C] -+ [K]] = O (8.139)

Letting G, ,(s) denote the numerator of an element of the transfer function
matrix, we get

lm_ 1(8)  Gia(s) . Gy.(s) |
A(s) A(s) A(s)
Gl = | - (8.140)
_A® A A(s) _
Then, from (8.102), we obtain
ads) = w*% Oi(s) + -+ + w%v 0.(s) (8.141)

For forced vibrations, the exciting forces are harmonic. Let Q, =
a, sin (w7 -+ ;) and in general Q, = a, sin (w,f + &), where g, is the ampli-
tude, w, the frequency, and «, the phase angle. For simplicity, we have assumed
here that each exciting force is simple harmonic. But general periodic forces can
be easily accommodated by Fourier series expansion and superposition, as in
the case of a single-degree-of-freedom systems. When all the eigenvalues of the
characteristic equation (8.139) have a negative real part, it follows from the
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frequency-domain techniques discussed for single-degree-of-freedom systems
that for steady-state vibrations, we get

Gres = Uy sin (@7 + 00 + W) + oo+ wy,sin (@f + o, + w,) (8.142)

where

_ G,u(jow) _ G, (jw)
U= G Rwy YT A AGe)

_ | Gu(jw) _ xGi(jw)
in = n A(jw) | v, =4 A(jw)

It is important to verify that all eigenvalues [i.e., roots of the characteristic
equation (8.139)] have a negative real part, as otherwise the equilibrium may be
unstable and the results of (8.142) invalid. The determination of the eigenvalues
is not required and the Routh criterion discussed in Chapter 9 can be used for
this purpose. Routh criterion provides this information readily without actually
determining the roots of a high-order polynomial. Hence, it is seen that the
frequency-response method is computationally much simpler than the time-
domain method employing modal decomposition. The computations in-
volve only the determination of the magnitudes and phase angles of complex
quantities.

The matrix [G(jw)] is called the harmonic-response function matrix. Bode
diagrams, which have been extensively discussed for single degree-of-freedom
systems, can be employed for each element G, (jw)/A(jw) of this harmonic-
response function matrix. In this way, the amplitude magnification or attenua-
tion, filter characteristics, and system identification from experimental frequency
response can be investigated.

Example 8.12
We illustrate the techniques by considering the example of a vibration absorber. An
engine of mass m; is mounted on a frame with stiffness k; and damping coefficient ¢, .
In order to absorb the forced vibrations, a mass m, is attached to m, through a spring
of stiffness &, and structural damping c, as shown in Fig. 8.31. A sinusoidal force
Q, = a, sin wt is acting on mass m;.

A free-body diagram for this two-degree-of-freedom system is shown in Fig.
8.32. The equations of motion are as follows:

migy + kigy + c1qy + kaolgr — q2) + (g1 — 42) = @y
maygs — c2(gy —dz) — ka(gy —g2) =0
These equations may be expressed as

my o;ﬁ_v _Hn_ +c2 Inngﬁ_v _H\S + ky —ka| AS* - AQ_*
+ = 8.143
ﬁo my |G —Ca ¢z 14, + —k; ka Jlg, 0 ¢ )

The mass, damping, and stiffness matrices are obvious from the foregoing
equation. In the Laplace domain, (8.143) becomes

mus? 4 (cr + e)s + ki +hy —(eas + ko) Ai B ﬁm_*
|AQN% + \GNV SNHN -+ Ca8 + \GNL %N - 0
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Figure 8.31 Vibration Figure 8.32 Free-body diagram for
absorber. system of Fig. 8.31.

Inverting the matrix in the foregoing equation, we obtain the 2 X 2 transfer
function matrix as

mys? + ¢85 + &y cs +ky R
4 A(s) A(s) Am_v
= 8.144
Amnv 28 + ks mis? 4+ (ci +c)s + ki +k, 0 ( )
A(s) Als)

where the characteristic determinant A is given by
A(s) = [mys? + (c1 + c2)s + k1 + kollmas? + cp5 + ko] — (a5 + k)2

= \‘:SNMA. IT A\‘:GN IT maCq l_l SNGthm IT ASNxﬂm l_l SN\«N l_l C1Co l_l \‘:Nﬁwvhn

-+ AﬁN\ﬂm + ﬁmNﬂth + Nﬂm\ﬂN AW.HA.MV

The transfer function of (8.144) is shown in the block diagram of Fig. 8.33. It
can be checked by the application of the Routh criterion, which is discussed in the
next chapter, that all roots of the characteristic equation A(s) = 0 have negative real
parts. This implies that the equilibrium about which the vibrations occur is asymptot-

ically stable. Hence, the harmonic response function matrix is obtained by substi-
tuting jw for s in the transfer function matrix. Since, in this case, we have Q, = 0, it

m,u_ Bmmm+nmm+ kp CrS+ ko m_
" a(s) a{s)
A A
Q=0 Cos+lkp B_mmin_tomvm+x_+ ko az
a(s) &(s)

Figure 8.33 Block diagram.
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follows from (8.144) that

N )
gy =" T G TG .mew + ks 1
A GNMITNAN A
g, = %Q_

When Q; = a, sin w¢, for steady-state forced vibrations we obtain ¢; =
uy sin (@t 4 ) and g, = u, sin (w¢ + y,), where

_ —my®? + ky + je, o x =m0 + ko o,
“o=a AGw) > V=4 AG®) 8.146
U, = a ko +jc, — D»N + Jje (8.146)
2 =4 TR Gy | Ve A @)

The vibration absorber is tuned such that k,/m, = w?. It then follows from
(8.146) that in the ideal case where ¢, = 0, we get «; = 0; that is, the mass m, on which
the exciting force is acting does not vibrate at all. It can be checked by the application
of Routh’s criterion that when ¢, = 0, all roots of the characteristic equation A(s) = 0
of (8.145) still have a negative real part. Hence, we can set ¢, = 0 and still obtain valid
results.

When ¢, =0 and k,/m, = w?, it can be shown from (8.145) that A(jw) = —k2.
Then from (8.146) it is seen that 4, — a1/k, and ¥, = —180°. Hence, for steady-state
vibrations, we obtain g, = a/k, sin (Wt — 180°) = —a,/k, sin wz. The result that
the mass m; which is acted upon by the exciting force does not vibrate at all can be
casily explained. The spring force k,q, acting on mass m, is seen to be —a, sin @¢
(i.e., it is equal and opposite to the exciting force). Hence, the net force acting on mass
my is zero. Since the absorber is to be tuned to the forcing frequency, it is useful in
cases where the exciting frequency is constant as in electrical motors and some ma-
chines. It is, in fact, employed in many applications, such as hair-cutting shears, in order
to isolate the frame from vibrations. Fig. 8.34 shows a rotating machinery mounted on
a beam. It is acted upon by a sinusoidal force due to unbalance. The vibration absorber
consists of a double cantilever beam with a mass at each end. However, there are some
applications such as internal combustion engines where the speed and hence the excit-
ing frequency are variable and the vibration absorber would be out of tune.

The assumption that mass m, can be attached to mass m, with only a spring
where the damping coefficient ¢, = 0 is only an idealization. In fact, the structural

H Q| = qg;sinwt

Ok:

Figure 8.34 Tuned vibration absorber.
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damping can be minimized but not completely eliminated. In this case, if the absorber
is tuned such that k,/m, = @2, the amplitude «; of mass m, will be given by
uy — g, 20
T TAGw) |
Consider the element (cys + k,)/A(s) of the transfer function matrix which
determines the forced vibrations of mass m,. After dividing A(s) throughout by kk,
and denoting c,/k, by the time constant 7, we obtain

(1/k)(zs + 1)
[(HewZ)s* + 201 /w,)s + 1I(1w7)s> + QLs/w,,)s + 1]

where w,, and ®,, are the two natural frequencies and {; and {, are the two damping
ratios. It may be desirable to plot the Bode diagram for (8.147) in order to determine
attenuation and filter characteristics. Such a diagram is shown in Fig. 8.35 for the
case ky = 1 and 1/7 < W, < O,,.

Gai(s) = (8.147)

20 __A
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Figure 8.35 Bode diagram for Eq. (8.147).

8.9 SUMMARY

This chapter has dealt with vibrations of linear dynamic systems. When the
nonlinearities are analytic functions of their arguments, it is possible to linearize
the equations of motion for small displacements about an equilibrium. However,
there are many nonlinear phenomena, such as frequency entrainment, jump
phenomenon, synchronization, and limit cycle vibrations, that cannot be
explained by the linear theory since they belong to nonlinear behavior.
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In the first part of the chapter, we covered single-degree-of-freedom
systems and the results were then generalized to multiple-degree-of-freedom
systems. Even though free vibrations of conservative systems are not encountered
in practice, it should be noted that in many lightly damped systems, a good
approximation of the damped natural frequencies can be obtained by deter-
mining the undamped natural frequencies. Two methods have been employed
for the analysis of forced vibrations of damped systems. The first method is a
time-domain method and employs the state transition matrix and convolution
integral. In order to use this method for multiple-degree-of-freedom systems,
we have employed modal decomposition. The second method employs the
frequency-response function or matrix and is a frequency-domain method.

Vibrations of flexible bodies or continuous systems that are described by
partial differential equations have not been included here. The reader is referred
to several references [1-4] dealing with this topic. A book that discusses many
practical problems is reference [5]. Bode diagrams are used extensively in control
engineering and several books in that area, such as reference [7], would be useful
for further study of Bode diagrams.

It is clear from our discussion that to avoid vibrations or to attenuate
them, the following measures may be undertaken:

1. If possible, eliminate the exciting force by balancing rotating components.
If the exciting force is being transmitted from other equipment, vibration-
isolation techniques can be used.

2. Attenuate the vibrations by proper choice of parameters such that the
exciting force is filtered out.

3. Employ vibration absorbers. This method is sometimes called passive
control of vibrations.

4. Use active control systems where the vibrations are sensed and a force is
generated to oppose the exciting force.

This last method is not discussed here and the reader may consult any of several
books in control engineering, such as reference [7], for this purpose.

PROBLEMS

8.1. Obtain frequency @ and period of oscillation T for the system shown in Fig. P8.1.
The spring is linear and has a stiffness, k = 5 kN/cm. The pulley has a radius of
50 cm and its mass moment of inertia about O is 7000 N-cm-s2. The mass m is

40 kg.
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K=5KN/Cm

Figure P8.1

8.2. A vehicle traveling over a bridge is idealized by the system shown in Fig. P8.2.
The bridge profile irregularities are represented by a sine function. Assuming that
the vehicle travels with a uniform velocity ¥V = constant, calculate the response
q(t) and force transmitted to the vehicle. Also calculate the steady-state vertical
motion of the vehicle using the following numerical data:

W =20kN
k = 2500 N/cm
Yo = 3cm
L=12m
V = 70 km/h
{ = 409 of critical damping
a(t)

k/2

AAAAA
YWY

O
C ’—(o—
AN

W

x

~

n

~<

_ L/2 N L/2 [

Figure P8.2

8.3. (a) Develop the equations of motion for the spring-mass system shown in Fig.
P8.3.
() Formy =my =m, my, =2m, ky = k, = 2k, and k; = k:
(1) Determine frequencies and mode shapes.
(2) Obtain the generalized mass and stiffness matrices [M*] and [K*].
(3) Establish the orthogonality conditions for the mode shapes.
(4) Obtain the normal modal matrix [¢].
(5) Develop uncoupled equations of motion.

%
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K,

m

!

ANANMA.

mx

Figure P8.3 X3

8.4. For the system shown in Fig. P8.4, find the position of the masses at time r when
subjected to the forcing functions F; and F;.

2k X
Fy = Fo Sin pt

2m

X2

AAMAA-
x

X3

Figure P8.4 F3= F,Cos2pt

8.5. For the vibrating system whose mass and stiffness matrices are
1 00
[M]=m|0 2 O
0 0 1
4 =2 0
[K]l=k| =2 3 —1
0 -1 1
Compute the frequency and mode shape of the highest mode.
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8.6. Obtain the equations of motion of the system shown in Fig. P8.6.

*3

Figure P8.6

8.7. Obtain the equations of motion for the system shown in Fig. P8.7,

RIGID BARS sm-u i

3LA

Figure P8.7
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STABILITY OF MOTION

9.1 INTRODUCTION

When the equations of motion of a system are nonlinear, the principle of super-
position is not applicable. Hence, if a motion is stable for a given set of initial
conditions and input, it cannot be implied that the motion will remain stable for
other sets of initial conditions and inputs. Hence, great care is required in the
stability analysis of nonlinear equations of motion and in this connection it is
useful to employ an appropriate stability theory.

There exist several concepts of stability such as stability in the sense of
Lagrange, Poincaré, Lyapunov, boundedness of response, and input-output
stability. For nonlinear systems, these different concepts of stability may not be
identical. For a particular application, one concept may be unduly restrictive,
whereas another may have no physical significance. The choice of one of these
concepts of stability depends on its physical significance in a particular applica-
tion. This chapter is concerned mainly with the stability analysis in the sense of
Lyapunov.

To investigate the stability of a particular motion, it is first perturbed and
the perturbation equations are analyzed further in order to examine whether the
perturbations grow or decay with time. The definitions of stability are stated in
the next section. When the perturbations are sufficiently small and the non-
linearities are analytic functions of their arguments, it is possible to linearize
the perturbation equations in the first approximation. These topics are discussed
in the earlier part of the chapter. For those motions that are stable for small

285
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stability. For nonlinear systems, these different concepts of stability may not be
identical. For a particular application, one concept may be unduly restrictive,
whereas another may have no physical significance. The choice of one of these
concepts of stability depends on its physical significance in a particular applica-
tion. This chapter is concerned mainly with the stability analysis in the sense of
Lyapunov.

To investigate the stability of a particular motion, it is first perturbed and
the perturbation equations are analyzed further in order to examine whether the
perturbations grow or decay with time. The definitions of stability are stated in
the next section. When the perturbations are sufficiently small and the non-
linearities are analytic functions of their arguments, it is possible to linearize
the perturbation equations in the first approximation. These topics are discussed
in the earlier part of the chapter. For those motions that are stable for small

285



286 Stability of Motion Chap. 9
perturbations, it is of interest to determine the domain of stability or the size of
perturbations for stable behavior. This topic is called stability in the large and
is discussed in the latter part of the chapter. Here, the success depends on the
selection of a suitable function called a Lyapunov function. The choice of a
suitable Lyapunov function is not always obvious and there is no general
procedure for its generation.

9.2 PERTURBATION EQUATIONS AND DEFINITIONS
OF STABILITY

The equations of motions have been formulated in Chapters 3, 4, and 5. It has
also been shown that by a suitable choice of state variables, the equations of
motion can be expressed as a set of first-order coupled equations in the form

M.&WHM,\.AXT...w.&.E _.v...umiu va AO._V
where {x} is an n-dimensional column matrix of state variables and Q,
(i=1,...,m) are input forces and moments. If a system has k degrees of

freedom and the state variables include all the generalized coordinates and
generalized velocities or momenta, the dimension n of the state variables is given
by n = 2k. However, some of the coordinates may be ignorable and in that case,
n << 2k. For example, let a rigid body have only three degrees of rotational
freedom. Then & = 3 and the Euler’s equations of motion expressed in the
form of state variables are given by (4.52). When the applied moments M, M,,
and M, are not functions of the angular displacements, the angular displace-
ments are ignorable coordinates and from (4.52) the dimension of {x} is given
by n = k = 3. In general, it can be stated that n <C 2k.

For given inputs QF and initial conditions {x,} at time ¢,, the solution of
(9.1) yields the nominal motion {x*} assuming that (9.1) satisfies the existence
and uniqueness conditions of Theorem 6.1. This nominal motion {x*} in the
n-dimensional state space may be stable or unstable. When it is unstable, the
motion is not realizable in practice. In order to study the stability of the nominal
motion {x*}, we consider the effect of perturbations {Ax,} on the initial state.
The inputs @} are not perturbed and this restriction is necessary since the con-
cept of stability in the sense of Lyapunov does not admit perturbation in the
inputs. The nominal motion is perturbed only in the initial conditions, which
may be caused by impulsive changes in the inputs or disturbances at the initial
time. Some other concept of stability, such as input-output stability, may also
require perturbations in the inputs.

Consider the effect of perturbations {Ax,} in the initial conditions and let
{x} be the resultant perturbed motion. The n-dimensional column matrix {Ax}
of perturbed state variables is defined by

{Ax} = {x} — {x*}; that is, {x} = {x*} 4 {Ax} 9.2)

I
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Now, substituting for {x} from (9.2) in (9.1), we obtain

(2%} 4 {Ax} = {f(xF 4+ Axq, ..., xF + Ax,, OF, ..., OF, D} 9.3)
and since the nominal motion satisfies the equation
Y ={f&t .. x5 0%, 00, 1)} -4
it follows that the differential equations in the perturbations are described by
{Ax} = {f(xT + Axy, ..., x5 + Ax, OF,..., 0%, 1)}

—{f(xk, ., xx 0%, ..., 08D} 9.5)
In case the functions { f} are continuously differentiable with respect to {x}, the

right-hand side of (9.3) may be expanded in a Taylor series about the nominal
motion {x*} as was done in Section 6.4. This procedure yields

(%) - [A%) = (f(xF, ..., 0 ..., D} + mM AX + {h(Axy, ..., Ax,, 1)} (9.6)

x=

oo

where the functions {4} contain all the remaining terms of the Taylor series
expansion. We let the Jacobian matrix in (9.6) be denoted by A(r) as defined by
(6.29). Since the nominal motion satisfies (9.4) it follows from (9.6) that

{A%} = A@) {Ax} + {M(Ax,, . . ., Ax,, D)} ©.7)

The original problem of determining the stability of the nominal motion
{x*} is now equivalent to the problem of determining the stability of the null
[i.e., trivial] solution of (9.7). If the perturbation described by (9.7) with initial
conditions {Ax,} decay to zero with time, we say that the nominal motion {x*}
is asymptotically stable. However, formal definitions of stability are given later.
We now consider a special case where the parameters in the equations of
motion (9.1) are time invariant so that the functions f; are not explicit functions
of time. In addition, the input forces and moments are zero or constants, so that
(9.1) reduces to
(X} = {f(x1, .. .5 %)} 9-8)
When {x} = {0}, the nominal motion {x*} represents a stationary motion or an
equilibrium {x,} which can be determined from the solution of the nonlinear
algebraic equations
{fCers .o os x)} = {0} 9.9)
After employing Taylor series expansion about the stationary motion or
equilibrium {x,}, the perturbation equation (9.7) becomes
{AX} = A{Ax} + {h(Ax,, ..., Ax)} (9.10)
where A is a n X n constant matrix and /; are not explicit functions of time. As
mentioned in Chapter 6, the perturbations equation (9.10) is called autonomous,

whereas (9.7) is called nonautonomous. The stationary motion or equilibrium
is denoted by the symbol {x.} to indicate that it is an equilibrium point in the
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state space rather than a time-varying trajectory {x*(¢)}. The transformation
{Ax} = {x} — {x,} is now merely a transformation of coordinates such that the
origin of the state space of perturbations {Ax} is equivalent to the equilibrium
point {x,} of the state space of {x} as shown in Fig. 9.1. It should be noted that
in the state space of perturbation variables {Ax}, the origin {Ax} = {0} is an
equilibrium.

X2

—— e
>
>
N

X
X3 n

Figure 9.1 Stationary motion or equilibrium point in state space.

The definitions of stability are given next. For the simplicity of notation,
we let {Ax} = {y} and denote it by the symbol y. The norm of y in Euclidean
space is denoted by

Iyl = [yt + 23+ - + 2172 O.1D)

Definition 9.1. The nominal motion {x*} is stable in the sense of Lya-
punov if for every € > 0, there exists a § > 0 where J depends on € and possibly
on t, such that || y(¢,) || < d implies that ||y(t)|| < € for all ¢ > ¢,.

Definition 9.2. The nominal motion {x*} is asymptotically stable if (a)
it is stable, and (b) lim,_.. || y(#)|| = O.

Definition 9.3. The nominal motion {x*} is unstable if there is an € such
that no J can be found to satisfy the condition of Definition 9.1.

These definitions of stability are in the sense of Lyapunov. In order to
demonstrate that the nominal motion is stable, it is required that for every €
that is given, a § must be found such that if the perturbation is initially in the &
neighborhood of the motion, the perturbation will never leave the € neighbor-
hood. Definitions 1 to 3 are illustrated in Figs. 9.2(a)—(c), respectively, for the
autonomous case but only for a two-dimensional state space. For the n-dimen-
sional state space, the circles become hyperspheres of radius § and ¢, respectively.
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TRAJECTORY
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Figure 9.2 (a) Stable; (b) asymptotically stable; (c) unstable.

Example 9.1
We consider a mass, linear damping, and nonlinear spring of Example 6.7 described by

ms + ek -+ k(x — xﬂmv ~0 9.12)

Choosing the state variables as x; = x and x, = X, the state equation representation
becomes

In Example 6.7 it was shown that this system has three isolated equilibrium
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states given by

(x) 0 A/ 6 —4/6
Xey = ’ >

0 ] 0
0
0
perturbations in the state variables about this equilibrium. The Jacobian matrix for
this equilibrium was obtained in (6.61) and (6.62). The perturbation equations are

We first consider the equilibrium ﬁ v and let Ax; = y; and Ax, = y, be the

: o 1 0

Y1 y k

=k ; ek sy ©.13)
Y2 m T m]\V 6

These equations are autonomous and the matrix A and function {4} of (9.7) for
this example are obvious. A typical trajectory in a sufficiently small neighborhood of
the origin is shown in Fig. 9.3(a). For any given €, a J that depends on € can be easily
found to satisfy Definition 9.1. Furthermore, Definition 9.2 can also be satisfied and
0

we conclude that the equilibrium {x.} = A 0

9.15).

v is asymptotically stable (see Example

TRAJECTORY

(a) (b)

Figure 9.3 (a) Typical trajectory in the neighborhood of equilibrium A__ w T (b)

unstable equilibrium A__ v cm w

Next, we consider the equilibrium state {x,} = ﬁ v om v . The Jacobian matrix for

this equilibrium was obtained in (6.63). The perturbation equations about this equilib-
rium are given by

. 0 1 0

Y1 Y
*.wu 2k c *Hw+ k 3 ., k1 (.14
Y2 m  m]V2 m .fu_.S o.i
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A typical trajectory in a sufficiently small neighborhood of the origin is shown in
Fig. 9.3(b). It is obvious that for any given €, no d can be found to satisfy the conditions

of Definition 9.1. Hence, the equilibrium state A)\oﬂv is unstable. Similarly, it can be

shown that the equilibrium state of ﬁl)o\ﬂv is also unstable (see Example 9.15).
Example 9.2
Consider the Van der Pol equation

d2x 2 1y ax _

&|~+.t0« CNN._.xlo (5.15)

Choosing the state variables as x; = x and x, = X, the state equation is represented by

X{ = X,
(9.16)
Xy = —x1 — gxt — Dx,
It can be easily verified that (9.16) has only one equilibrium state (x; = 0, x, = 0).
Letting Ax, = y; and Ax, = y,, the perturbation equations about this equilibrium
become
Y1 _ 0 1 p4t . 0 ©.17)
V2 =1 4|y uyty,

Examination of (9.15) reveals that if | x| < 1, the damping is negative, whereas
if |x] > 1, the damping becomes positive. This equation exhibits limit cycle (i.e., self-
excited) oscillations which are represented by a closed trajectory in state space enclos-
ing the origin as shown in Fig. 9.4(a). For a given €, in Fig. 9.4(b), a J can be found
such that if the initial perturbation is inside the circle of radius d, it does not leave the
circle of radius €. In this case, any d < €; will suffice. However, for given €,, no such

Yo Y2

LIMIT CYCLE
TRAJECTORY

AN y N y

A% \\\

(a) (b)

Figure 9.4 Unstable equilibrium Tov v
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J can be found and we conclude that the equilibrium state (0, 0) of (9.15) is unstable.
It becomes clear that if there exists one value of € for which no d can be found, the
equilibrium is unstable.

Example 9.3
We consider a mass and nonlinear hard spring without damping. This system is
described by

mi + kix +kx3=0

Again choosing the state variables as x; = x and x, = X, the state equations
are described by

(9.18)

There is only one equilibrium state given by x; = 0, x, — 0. Letting Ax; = y;
and Ax, = ., the perturbation equations about this equilibrium become

Y1 =DX2 (9.19)

Yo = |ﬂ:1% 1 Mu\ i

This system is conservative and (9.19) represents a nonlinear oscillation, which
is a closed trajectory in the state space around the origin, and depends on the initial
perturbation {y(¢,)} since the initial energy is conserved. Hence, for any given € a value
of & can be found depending on € such that if the initial perturbation lies inside the
circle of radius &, the closed trajectory is enclosed inside the circle of radius €. This is
illustrated in Fig. 9.5.

From Example 9.2, it is seen that if there exists a self-excited oscillation around
an equilibrium state, that equilibrium is unstable. In a conservative system, the equi-
librium is stable in the sense of Lyapunov, but it is not asymptotically stable. The

Y2
CLOSED

TRAJECTORY
thAO;

Figure 9.5 Stable equilibrium ﬁw v
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difference between self-excited and conservative oscillations is the following. A self-
excited oscillation is independent of the initial perturbation. The initial energy is not
conserved and the energy drawn from a nonoscillating source is just balanced by the
energy dissipated per cycle. The frequency and amplitude of self-excited oscillations
depend on this energy balance. On the other hand, in a conservative system the initial
energy is conserved and the amplitude and frequency of the oscillation depend on the
initial perturbation.

Definition 9.4. The nominal motion {x*} is quasi-asymptotically stable if
property (b) of Definition 9.2 is satisfied but not property (a).

We have observed from Definition 9.2 that a nominal motion must first
be stable before it can qualify to be asymptotically stable. This requirement is to
prevent a perturbed motion from straying far from the nominal motion before
converging toward it. However, there are some pathological cases that satisfy
Definition 9.4, as illustrated by the following example.

Example 9.4

Let the perturbation equations about an equilibrium or nominal motion be described by
Y1 =2y1y
S (9.20)
Y2 = Y2 — )i

The only equilibrium of (9.20) is the null or trivial solution (y; = 0, y, = 0).
A nontrivial solution of (9.20) is a one-parameter family of circles described by

(y1 — ) +y3 =c? (9.21)

passing through the origin with radius ¢ and center at (¢, 0), as shown in Fig. 9.6.

Starting at any initial condition {y(¢,)}, the circle through that point ultimately
terminates at the origin and hence condition (b) of Definition 9.2 is satisfied. But condi-
tion (a) is not met because for a given €, no d can be found to satisfy the requirement of
Definition 9.1.

Y2

Figure 9.6 Quasi-asymptotically stable
equilibrium.
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In the examples we have considered so far, the nominal motion is either an
equilibrium or stationary motion and the perturbation equations in {y} are
autonomous. In such cases, we find that § of Definition 9.1 depends only on €
and not on the initial time #,. For a time-varying nominal motion {x*(r)}, the
perturbation equations in {y} are nonautonomous and ¢ may also depend on
t,. The following two definitions refine the notions of stability stated by Defini-
tions 9.1 and 9.2 to nonautonomous cases.

Definition 9.5. The nominal motion {x*} is uniformly stable if it is stable
in such a way that & of Definition 9.1 does not depend on ¢,.

Definition 9.6. The nominal motion {x*} is uniformly asymptotically
stable if (a) it is uniformly stable and (b) perturbations with || y(#,)|| < & are
such that lim,_.. || y(#)|| — O uniformly in both {y(z,)} and ¢,.

When & does not depend on ¢, but only on €, the Lyapunov stability is
independent of the initial time ¢, at which the perturbation occurs and we say
that the nominal motion is uniformly stable. The expression lim,_.. || y(#)|| — 0
uniformly in {y(#,)} means that the convergence is only a function of the magni-
tude or norm of {y(#,)} and is not a function of the sense or direction of { y(z,)}
from the origin. In nonlinear nonautonomous equations, the rate of conver-
gence may depend on the direction of the perturbation from the origin, and in
particular there may exist directions or hyperplanes along which the rate of
convergence becomes very slow. Hence, the expression lim,.. ||y()] — 0
uniformly in both {y(#,)} and ¢, means that the convergence is independent of
both the direction of the initial perturbation and initial time at which it occurs.
It should be noted that when an autonomous system is asymptotically stable, it
implies that it is uniformly asymptotically stable.

Example 9.5
To illustrate the distinction between stability and uniform stability, we consider an
example given by Hsu and Meyer [1] and also by Vidyasagar [2]. Let a scalar perturba-
tion equation be described by
y = (6tsint — 2¢t)y

The trivial solution ¥ = 0 is an equilibrium of this equation and by separation of
variables, the solution is obtained as

W) = y(to)exp[6sint — 6fcost — t2 — 6sinfy + 6¢y cos to + 3]
We show that the trivial solution is stable but not uniformly stable. For ¢, >> 0 and
t — to > 6, the ratio | y()/y(t,) | is bounded by exp [12 + T(6 — T)], where T = ¢ — to.
Defining

c(ty) =supexp[6sint — 6tcost — t2 — 6sin ty, + 6¢y cos tg + 3]

1210
we know that ¢(zy) is a finite number for any fixed ¢,. Thus, given any € > 0, we can
choose (€, to) = €/c(ty) to satisfy Definition 9.1, showing that the trivial solution
y = 0 is stable for all £, > 0. On the other hand, if we choose ¢, = 2nm, the solution
yields
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y(@2n + 7] = y(2nx) exp [(4n 4 1X(6 — m)7]
This shows that
c(2nm) > exp [(4n + 1)(6 — m)7)
Hence c(t,) is unbounded as a function of ¢,. Thus, given € > 0, it is not possible to
choose a single d(¢), independent of the initial time, to satisfy Definition 9.5. There-
fore, the trivial solution y = 0 is not uniformly stable.

The foregoing definitions pertain to stability in the sense of Lyapunov.
However, there are some applications where the concept of stability in the sense
of Lyapunov is not appropriate. Specially, this concept is too stringent when
applied to closed trajectories, as illustrated by the following two examples.

Example 9.6

Consider the Van der Pol equation (9.15) of Example 9.2. It was seen that the equi-
librium state (x; = 0, x, = 0) is unstable in the sense of Lyapunov and that there
exists a self-excited oscillation around the origin. Let {x*(s)} denote this particular
closed trajectory whose stability is to be investigated, as shown in Fig. 9.7(a). Let

x2

{x}

WY (to) =6

@

X

(a)

x(t)

x, AFTER CONVERGING
TO LIMIT CYCLE TRAJECTORY

(b).

Figure 9.7 Lyapunov stable limit cycle.
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{¥(t0)} be the initial perturbation and {x(#)} the perturbed trajectory. As time evolves,
the perturbed trajectory {x} converges to the same limit cycle trajectory {x*} at point
B. However, the reference point 4 has now moved to 4" and B and 4" do not coincide
at the same instant of time. For a given €, one can find J to satisfy Definition 9.1. But
from Fig. 9.7(b) it is seen that after the perturbed trajectory converges to the limit
cycle frequency, y; = dx; does not go to zero. Hence, any self-excited oscillation can-
not be asymptotically stable in the sense of Lyapunov.

Example 9.7
The orbit of one body around another as governed by Newton’s law of gravitation has
been discussed in Section 3.8. From (3.71), the equation of motion in polar coordinates
is given by

p— rr = Gl m) 9.22)
with r260 = constant. We consider a circular orbit of radius ro. For a circular orbit,
¥ =7F¢ =0,r = ry, a constant, and 6 = ®, a constant. Hence, from (9.22) we obtain

1/2
W= ﬁgs:‘uuing (9.23)
r

Now let the body’s position and velocity be perturbed so that the resultant orbit is
another circular orbit of radius r, + dr. We see that for the unperturbed satellite, the
angular velocity @ is proportioned to r53/2, whereas for the perturbed body, it is
proportioned to (ro + dr)~3/2. The two orbits will therefore be traversed at different
periods. As time evolves, the distance between the perturbed body and the reference
body will increase to about 2r,, however small the value of ér may be. Hence, the body’s
orbit is unstable in the sense of Lyapunov, even though it is well behaved.

For a closed trajectory, a more appropriate definition of stability is orbital
stability, which is also called stability in the sense of Poincaré. It is concerned
with stability relative to the closed trajectory itself and is not concerned with
any reference point traveling along the trajectory. Let p(x, C) be the minimum
Euclidean distance from a point x to a closed curve C.

Definition 9.7. A closed trajectory C of a system {x} = { f(x,,..., X, )}
is orbitally stable if for every € > O there is a & > 0 where & depended on € and
possibly on #, such that every solution of the system {x(¢)} with p(x(t,), C) < &
satisfies p(x(t), C) < € for all t > 1,.

Definition 9.8. A closed trajectory C of a system {x} = { f(x,,..., Xx,, D}
is orbitally asymptotically stable if it is (a) orbitally stable, and (b) for all tra-
jectories that are sufficiently close to C, p(x(?), C) — 0 as 1 — co.

It is now seen that the limit cycle oscillation of Example 9.5 is orbitally
asymptotically stable and the circular orbit of Example 9.6 is orbitally stable but
not orbitally asymptotically stable.

T
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9.3 STABILITY OF AUTONOMOUS MOTION FOR SMALL
PERTURBATIONS

In this section it is assumed that the equations of motion are autonomous as
given by (9.8) and the nominal motion {x*} whose stability is to be investigated
is either an equilibrium or a stationary motion which we represent by {x,}. The
perturbation equations (9.5) about {x,} may be represented as in (9.10). Again
for simplicity of notation, we let {Ax} = {y} and represent (9.10) as

D} = A+ By -5 Y] 9.24)

It should be noted again that for the perturbation equations to be auton-
omous as in (9.24), it is necessary that the original equations of motion be
autonomous and the nominal motion whose stability is to be investigated be a
constant and not function of time. When the nonlinear functions {f} in (9.8)
are analytic functions of their arguments so that Taylor series expansion (9.10)
is possible, we note that {4} in (9.24) consists of terms which are of order higher
than the first. Then in (9.24), the nonlinear terms {4} are dropped by assuming
that the perturbations are small and the stability of the linear approximation
{7} = A{y} is investigated.

This approach yields stability information in the small, that is, when the
perturbations are sufficiently small but there is no indication of the magnitude
of perturbations that could be considered as small. Hence, when asymptotic
stability exists, the size of the region of asymptotic stability is not known. The
determination of the size of this region will be studied in Section 9.5 by choosing
a Lyapunov function. The theorem employed for stability investigation for
small perturbations is stated in the following.

Theorem 9.1. Consider the autonomous perturbations equation (9.24)
about an equilibrium or stationary motion {x.,}. If limy_, |/h(¥)|l/||y]] = 0,
then:

1. If the linearized system {y} = A{y} has only eigenvalues with negative
real parts, {x,} is asymptotically stable in the small.

2. If the linearized system {y} = A{y} has one or more eigenvalues with
positive real parts, {x,} is unstable in the small.

3. If the linearized system {y} = A{y} has one or more eigenvalues with zero
real parts and the remaining eigenvalues have negative real parts, the
stability of {x,} cannot be ascertained in the small by studying the linearized
system alone.

This theorem is sometimes called the “principle of stability in the first
approximation.” It is also sometimes called “Lyapunov’s first method.” The
proof of this theorem is based on Lyapunov’s second or direct method and is
given in Section 9.5. It is noted that when the functions {4} in (9.24) consist of
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terms which are of an order higher than the first, the limit of || h|| required by
this theorem is always satisfied.

The determination of the eigenvalues of matrix A can be avoided by
application of the Routh criterion. The application of this criterion is as follows,
The characteristic equation of matrix A is first obtained as

Al —Ajl=aA" +a,_ A"+ - +ad+a,=0 (9.25)

Next, the coefficients of the characteristic equation are arranged in the following
Routh array:

QXPTN a,_, a,¢ -+ 0 Ist row

d,_, a,_; a,_s d,., --- 0 2nd row

b, b, b, b, - 0

¢ c, C3 :

d, d, 0

e, e, 0

fi O

g 0 (n + Dth row

After arranging the first two rows of this array from (9.25), the remaining
rows are obtained from the previous two rows. The row of b terms is obtained
as follows:

Nvm — Q=<~n~=ln - Q:Q:Im
Q=l~

@N _ a, 14, 4 — 4,4, s A@va

Q=|~

@ — 8y 18p-6 — Q8,7
3 a

n—1
By dropping down a row, the same pattern is used to obtain the ¢ terms as

— W_Qalm —_ Q:IMWN
b,

b,a,_s — a, ,b;
by

This process is continued until it is terminated at the (n + 1) row, where
n is the order of the system. Routh’s criterion states that a necessary and suffi-
cient condition for all eigenvalues of A to have negative real parts is that all
coefficients in the first column of the array have the same sign. Furthermore, the

Cy
(9.27)

Cy =
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number of changes of sign of the coefficient in the first column of the array is
equal to the number of eigenvalues of A with positive real parts. The appearance
of one or more zeros in the first column may signify that one or more eigen-
values of A have zero real parts and requires a further check. A proof of this
criterion is given by Routh [3] and is omitted here.

Example 9.8

The tumbling motion of an orbiting rigid body satellite about its center of mass, where
the tumbling rate far exceeds the orbiting rate, is described by the Euler equations
(4.47) with M|, = M, = M; = 0. These equations may be represented in state-vari-
able form as

oy = WS — L)w,0,
1
. 1
QVN - NINANw - N_v8u8~ A@.NWV

1
W, = INMA? — L)w @,

In addition to the equilibrium state (0, 0, 0), the three possible steady motions
are the following:
O o=C, w,=0, w;=0

@ 0,=0C, w,=0, w;=0
B @;=0C;, w,=0, @,=0

We wish to investigate the stability of these three stationary motions by applica-
tion of Theorem 9.1. We first consider the stationary motion (Cy, 0, 0) and introduce
the perturbed motion

w; = Cy + yy, W, =0+ y,, w3 =0+ y; (9.29)

where {y} is the perturbation about the nominal motion. From (9.28) and (9.29), the
differential equations for the perturbations are given by

. 1

Y1 = HQN — 13)y,¥3

. 1 1

2 = 37Uz — 11)C1 )5 - Uz — L1)y1)3 .
2= —1)Ciya + - — Iyiy (9.30)

. 1 1
V3=, — L)Ciy, + Uy — D)y 1y,
I; 13

Considering small perturbations, the higher-order nonlinear terms in (9.30) are
ignored to obtain the linearized equations

Jy1=0

N 1
Y2 HHAD —1)C1y; 9.31)

fuws|€9§
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Here, it is seen that limyy_.. || h(¥)]l/|ly|| = O and the A matrix is obtained from
(9.31) as
0 0 0
1
>” O O NANQ |~CQ~
o Lu, e 0
1
The characteristic equation of this A matrix is given by
»ﬁf _ QW.Q_ — L)I; — Dg =0 (9.32)
NNNm

If I, > I, > I, or I, > I, > I,, the characteristic equation has a positive real
root and the stationary motion (C,, 0, 0) is unstable. Otherwise, the roots have zero
real parts and Theorem 9.1 fails to yield any stability information. We have, however,
proved that steady rotation about the intermediate principal axis is unstable. The same
information can be obtained by considering the other two steady motions (0, C,, 0) and
0, 0, C3). The stability of steady rotation about the largest and smallest axes will be
investigated in Section 9.5 by Lyapunov’s second method.

Here, Routh’s criterion was not employed since the roots of (9.32) can be ob-
tained by inspection. It is now employed for the purpose of illustration. Letting

(I — 1)U — 1) _

INA 4
The characteristic equation may be written as
A —C2ad =0
The Routh array is
1 —C?a Ist row
€x0 0 2nd row
—C?a 0 3rd row
0 4th row

The zero in the first column and second row has been replaced by €, where
1 > € > 0 in order to compute the subsequent rows. The zero in the fourth row and
first column indicates that (9.32) has a root at the origin. If @ > 0, then all the coeffi-
cients in the first column do not have the same sign and hence the origin of (9.31) is
unstable. If a < 0, then the zero in the second row and first column indicates that
(9.32) has a pair of purely imaginary roots.

Example 9.9

The equation of motion of a bead sliding on a circular hoop rotating at a constant
angular velocity has been derived in Example 5.8. The equilibrium positions of the
bead have also been determined in Example 5.6 by the application of the principle of
virtual work. In this example, we investigated the stability of these equilibriums for
small perturbations. The equation of motion as given by (5.76) is

..w.._.emoom,mmmb%._.\whoam“o (9.33)

T TR
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Choosing the state variables as x; = @ and x, = 0, the state equations become

1= X2 (9.34)

X, = —w3}cos x; sinx; — W COoS X

The four distinct equilibria of (9.34) as determined in Example 5.6 are given by

() x;.— W Xy0 =0 (9.35)
3n
ANV X1e = wu Xge = 0 AW.M@V
B) x,.— —sin~! A%cmv X0 =0 ©.37)
.o T
@ x,, — —sin~1 A%mv — 2 x=0 (9.38)

with the constraint that wgc > g. These four equilibria are shown in Figure 9.8.

Figure 9.8 The four equilibrium posi-
tions of the bead.

Considering perturbations Ax; = y, and Ax, = y, about an equilibrium, the Jacobian
matrix A of the Taylor series expansion about the equilibrium is obtained as

s 0 1

OX |x—x,

A . .
w3 sin? x; — w?cos? x; + W sinx; O

For the equilibrium (9.35), we get
0 1
A =
w? + W 0

and the characteristic equation becomes

_»H|>_H§|Aew+wvuc
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with roots
1/2
x;.n = n_uTcw -+ mg

Since one of the roots is positive, the equilibrium (9.35) is unstable according to
Theorem 9.1.
For the equilibrium (9.36), we obtain
0 1
A= wi—£ o
c

and the characteristic equation becomes
_r|>_n§lAew|wvn
with roots

sf.n _ n*nﬁem B M%\N

4

Since wic > g, one of these roots is again positive and equilibrium (9.36) is also
unstable.
For the equilibrium (9.37), we get
0 1

A= g2
\‘acmAH B oumonv 0

and the characteristic equation becomes

%+8le mnvuo

w4c?
with roots

R

wic?

Since w2c > g, both these roots are purely imaginary and according to Theorem
9.1, the stability of the equilibrium cannot be investigated from the linearized equations
even for small perturbations. The same conclusion is arrived at for the equilibrium
(9.38).

Example 9.10
We consider the two-body problem discussed in Chapter 3 but let the attractive central
force be given by

= Gmm (9.39)

\.!
where 7 is an integer. We note that for Newton’s law of gravitation, n = 2. From (3.71)
and (3.72) the equation of motion can be obtained as

i gk (9.40)

re

r20 = h, constant 9.41)
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where k = G(m, + m,). Substituting for 0 from (9.41) in (9.40), we obtain
F—==—= 9.42)

Choosing the state variables as x; = r and x, = 7, the state equations are
obtained as

1= 9.43
ok 049
27 X1 Xy

We now consider a stationary nominal motion, namely, a circular orbit. This
motion is obtained from the solution of the nonlinear algebraic equations when the
left-hand sides of (9.43) are set equal to zero. Hence, this nominal motion is described

by
k=3
Xie = ANle >

To study the stability of this stationary motion, we let x; = x,, + y,; and
X3 = X,. + ¥, Where y; and y, are the perturbations. The linearized equations in the
perturbations become

.XNn”O

1=
h2 9.44)
Y2 = xlﬂAlu + n)y,
1e
The A matrix is given by
0 1
A= p2
um (-3+m 0
and its eigenvalues are obtained as
[k 1/2 .
Az = +i[3r G — 0 ifn <3
h 1/2 .
M&.N == H»Hﬁ%lw«l&ﬂﬁ!WV@ ;.va

If n > 3, from Theorem 9.1 we conclude that any circular orbit is unstable. If
n << 3, A has purely imaginary eigenvalues and the stability of the circular orbit cannot
be studied from the linearized equations.

9.4 STABILITY OF NONAUTONOMOUS MOTION FOR SMALL
PERTURBATIONS

This section is concerned with the stability investigation of a general time-
varying motion for small perturbations. A nominal motion {x*}, obtained from
the solution of (9.1) for given forces, is now perturbed by initial conditions at
initial time ¢, > 0. The perturbation equations are expressed by (9.5). Letting
{Ax} = {y}, the perturbation equations may be written as

1= A0+ (G, Y0 D) (9.45)
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and the linearized equations become
{5} = A} (9.46)

We now state a theorem for nonautonomous systems which is analogous
to Theorem 9.1 for autonomous systems when the perturbations are sufficiently
small.

Theorem 9.2. Assuming that ||h(y, #)||/|]|y|| — O uniformly in ¢ as
[|y]] — 0, uniform asymptotic stability of the origin of the linearized system
(9.46) implies that the nominal motion {x*} is also uniformly asymptotically
stable for small perturbations.

The proof of this theorem is given by Hsu and Meyer [, Chap. 11} and is
omitted here. It should be noted that Theorem 9.2 states sufficient conditions
for uniform asymptotic stability for small perturbations. However, unlike linear
autonomous systems, the problem is now to establish uniform asymptotic
stability for the time-varying linear system of (9.46). One approach is to employ
Lyapunov’s direct method to be discussed later. However, it will be realized
that the selection of a suitable Lyapunov function is a very difficult task for
nonautonomous systems.

Another approach is based on some conditions satisfied by the state
transition matrix @ of system (9.46). In Chapter 6 it was shown that the solution
of (9.46) can be written as

{y(®)} = B, 1.){¥(t)}

where the state transition matrix @ is obtained from the solution of (6.46) with
conditions (6.47). But in general it is not possible to derive an analytic expression
for @ in the case of time-varying parameter linear systems. Hence, this approach
also has computational difficulties but is stated here for conceptual value. The
induced norm of the state transition matrix is defined by

o
o = sup IEXI — sup jj@x | = sup || @x]
=0 []X]] Txi=1 Ixi<1
The necessary and sufficient conditions for uniform asymptotic stability

of the origin of (9.46) are now stated as follows. The origin of (9.46) is uniformly
asymptotically stable for 7, <{ ¢t << oo and ¢, > 0 if and only if

sup sup || ®(z, £,) || < oo

te=0 1=t
and

| ®(t, t5)]| — oo as t — oo uniformly in ¢,

An alternative necessary and sufficient condition is that there exist positive
constants m and A such that
| D, ty)]]| < me= e for all t, > 0 and all ¢t > ¢,
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The proof of the conditions is given by Vidyasagar [2, p. 170]. Because an
analytic expression for the state transition matrix is not available, there are
computational difficulties in employing these conditions.

An approach that is sometimes employed is called the “freezing-time”
method. At each instant of time r = ¢,, ¢,,..., ¢, ..., the time-varying param-
eters are fixed at their current values and the matrix A(1) is treated as a con-
stant for the interval ¢; to ¢;, ;. The condition for the constant matrix A(t), with
1y =10, t; ..., 1, ..., t0 have eigenvalues with negative real parts can then be
investigated by employing Routh’s criterion.

The following question then arises. If all eigenvalues of the matrix At
have negative real parts for ¢, = ¢,, t,,..., t,, ..., does it mean that the origin
of the linear system of (9.46) is uniformly asymptotically stable ? The answer to
this question is not always in the affirmative, as demonstrated by the following
two counterexamples,

Example 9.11

This example is quoted by Aggarwal and Infante [4] and attributed to Marcus and
Yamabe. Consider the system {y} = A(#){y}, where A(?) is given by

AW =

—1 4+ acos?t 1 —asintcost
(9.47)

—1 —asintcost —1 4 agsin?2¢

with @ > 0. When the determinant | Al — A is considered, it is found that the eigen-
values of A(¢) are given by

= (9.48)

) _a—24+ /a2 —4
1,2 3

and are time invariant. They have negative real parts for @ << 2. A closed-form solution
of this equation is possible and is given by

SS msl_:oo:ml_miafﬁov
“ 1. | G.AB
ya() —e@ rsint  etcost | {y,(0)

which shows that asymptotic stability requires that ¢ < 1. Hence, if @ = 1.5, then the
freezing-time method indicates that the origin of the system of (9.47) is asymptotically
stable, whereas it is actually unstable.

Example 9.12
.H”Em example is quoted by Hsu and Meyer [1] and is attributed to Vinogradov. Con-
sider the system {»} = A(s){y} with A(r) given by

AG) — _HI_ — 9 cos? 6t + 12 sin 61 cos 6t 12 cos? 6¢ + 9 sin 6¢ cos 6t Q

—12sin? 6¢ 4 9 sin 6¢ cos 6¢ —1 — 9sin2 6+ — 12 sin 6¢ cos 6¢
(9.50)
This example is also so contrived that the eigenvalues of A(r) are
A2 =—1,—10 9.51)
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and are time invariant, A closed-form solution of this equation is available and is
given by

*SS €2 (cos 6t + 2sin 67) e~ 1% (sin 61 — 2 cos od ﬁu:@w
a0 e (2cos 6 — sin 6r) 7137 (2 sin 61 + cos 6¢) | (y,(0)

The presence of the term e2* in (9.52) shows that the origin of (9.50) is actually
unstable, whereas the freezing-time method indicates asymptotic stability.

(9.52)

These two examples show that the eigenvalues of A(z) do not carry a great
deal of information regarding stability. Yet the freezing time method has some-
times been successfully employed in the aerospace industry for the design of
autopilots for aircraft and missiles. It appears that if the elements of A(z) are
periodic in time or if its eigenvalues are near the imaginary axis, as in the
foregoing examples, then the stability results based on the eigenvalues of A(f)
may be invalid.

9.5 STABILITY IN THE LARGE OF AUTONOMOUS SYSTEMS

This section deals with the second or direct method of Lyapunov for the investi-
gation of stability of equilibrium states or stationary motions where the pertur-
bation equation (9.24) is autonomous. The objective is also to determine the
size of the region of stability around an equilibrium state or stationary motion
(i.e., the size of the perturbations that can be tolerated). Hence, this analysis is
also called the investigation of stability in the large.

The first step is to investigate the stability for small perturbations by
application of Theorem 9.1. However, this theorem is sometimes not applicable
because the condition that lim || hi|/||y]| = O as ||y|] — 0 is not satisfied. This
can happen when the nonlinearities are not analytic functions of their argu-
ments, as, for example, in the case of Coulomb friction. Also, as shown in some
of the previous examples, Theorem 9.1 fails to reveal any stability information
when the matrix A has one or more eigenvalues with zero real parts and the
remaining eigenvalues have negative real parts.

Even when Theorem 9.1 is applicable and reveals that a particular equi-
librium or stationary motion is asymptotically stable for small perturbations, the
size of the region of stability may be too small for practical considerations. For
example, let a scalar perturbation equation be given by » = —0.01y + »°.
From Theorem 9.1, the origin of this equation is asymptotically stable for small
perturbation. However, when |y(0)| > 0.1, we can show by directly integrating
the equation, after separating the variables, that the perturbation grows without
bound. For the foregoing reasons, there is a strong motivation to employ the
second method of Lyapunov. The success of the method depends on the selec-
tion of a suitable function called a Lyapunov function which has to satisfy
certain sign definiteness properties. We consider a function ¥(y,,...,y,) of n
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variables, where n is the order of the dynamic system (i.e., the number of state
variables). Throughout this section, ¥ is not an explicit function of time .

Definition 9.9. A scalar function V(y,,...,y,) is called positive definite
in a region Q containing the origin if V'(0,...,0)=0and V(y,,...,»,) > 0 for
[lyl] # 0 in Q.

Definition 9.10. A scalar function V(y,, ..., »,) is called negative definite
in a region Q containing the origin if ¥(0,...,0)=0and V{(y,,...,»,) <0 for
[ly][ = 0 in Q.

Definition 9.11. A scalar function V(y,,..., y,) is called positive semi-
definite in a region Q containing the origin if ¥(0,...,0) =0 and V(y,,...,
y.) =0 for ||y|| # 0in Q.

Definition 9.12. A scalar function V(y,,..., y,) is called negative semi-
definite in a region Q containing the origin if ¥(0,...,0) = 0 and V(y,,
¥.) < 0for ||y|| # 0 in Q.

Y

Definition 9.13. A scalar function V(y,,...,y,) that does not satisfy any
one of Definitions 9.9 to 9.12 in a region Q containing the origin is called sign
indefinite.

Example 9.13

We consider a dynamic systemn described by three state variables so that the state space
is three-dimensional. Let

V(y1,92,¥3) =yt + ¥} + 3
This function is positive definite and the region Q is the entire state space. Now, let
V(yi,¥2,¥3) = —»t — »3 — »}
This ¥ function is negative definite throughout the state space. Hence, it is obvious that
V is negative definite if — V' is positive definite. For the three-dimensional state space, let
V(y1,52,¥3) =yt + ¥}

This V function is positive semidefinite since it is zero not only at the origin but also
along the y; axis.
We consider a dynamic system with two state variables and choose

V(yi,y2) =yi — »3
As shown in Fig. 9.9, there is no region surrounding the origin in which this ¥
function is sign definite. Hence, this ¥ function is indefinite.

The foregoing V functions are simple enough that their sign definiteness
can be determined by inspection. Unfortunately, there is no general method for
determining whether any given function is sign definite or semidefinite except in
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Y2

v<0

V>0

v>0

V<0

Figure 9.9 Sign indefinite function.

the case of quadratic functions. A quadratic function is in the form

w\Au\: e v\,:v = mu\wﬂmﬂmu\w
=3 3Py, (9.53)

where without loss of generality it can be assumed that matrix P is symmetric.
The following theorem may then be employed.

Theorem 9.3: Sylvester’s Theorem. A necessary and sufficient condition
for a quadratic function {y}*P{»} to be positive definite is that the following n
determinants are all positive:

D, —p,, >0, D, — Py Pr2 ~0
D2 Da2
Piyv P12 - P
D, = . >0
Din e Don

A proof of this theorem is given by Bellman [5]. The converse of this
theorem is not true; that is, a quadratic function need not be negative definite if
all the n determinants are negative. There is another theorem to prove that a
quadratic function is negative definite. However, we can prove that ¥ is negative
definite by showing that — V" is positive definite.

Example 9.14
Let a quadratic function be given by

V(y1,y2, ¥3) = 2y} + 4y1¥s + 33 + 6y2y3 + ¥}

=

e

e
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which can be written in the form

2 0 27 (y,
w\o:uu\?%uv”_'v: Ya Eu‘_ 0 3 3|¢y, (9.59)
2 3 1(lys
The three determinants are obtained as
20
D, =2>0, D, = =6>0
o
2 0 2
Dy;=|0 3 3/=-24<0
2 3 1

Since D; is negative, this quadratic function is not positive definite.

We now state a basic theorem of the Lyapunov second method for the
stability investigation of autonomous systems. It should be noted again that in
this section, the equations of motion are autonomous as expressed by (9.8):

=1y, x) ©.8)

We are considering the stability of an equilibrium or stationary motion {x,} of
(9.8) and denote the perturbation {Ax} about {x,} by {y}. Let the perturbation
equation (9.10) be expressed by

Y =1{g0, .-, ¥} (9.55)

where g, are nonlinear functions of their arguments. The stability of {x,} is now
equivalent to the stability of the null or trivial solution of (9.55) (i.e., its origin

{»} = {0p.

Theorem 9.4. Let V(y,,...,y,) be a scalar function with continuous
first partial derivatives. Let Q, designate a bounded region about the origin of
(9.55) in which ¥(y,, ..., »,) < k, where k is a constant. If in Q,:

1. V(y) is positive definite and
2a. V(y) evaluated along the trajectory of (9.55) is negative semidefinite

then the origin of (9.55) is stable in Q,.

Or 2b. P(y) evaluated along the trajectory of (9.55) is negative definite,

then the origin of (9.55) is asymptotically stable in Q,.

Or 2c. V(y) evaluated along the trajectory of (9.55) is negative semidefinite and
the trajectory of (9.55) cannot stay forever at the points ¥ = 0 within Q,

other than at the origin, then the origin of (9.55) is asymptotically stable
in Q.
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It is noted that Q, is the domain of stability or asymptotic stability. In the
latter case, it is also called the domain of attraction. The V function is called
the Lyapunov function.

A proof of this theorem can be given from geometrical considerations. We
assume that a ¥ function has been found that is positive definite and
V(y1,...,5,) <k in a bounded region Q,. Then for such a function, ¥ = ¢,
where c is a constant, represents a closed hypersurface. For the two-dimensional
case, these hypersurfaces become closed curves, as shown in Fig. 9.10. Now, V

evaluated along the trajectory of (9.55) is obtained as
. oV . .
V=2 = {grad V}"{j} = {grad V'}7{g} (9.56)

i=1
where the last equality is obtained by employing (9.55). Hence, the theorem
requires that the ¥ function selected should have continuous first partial deriva-
tives,

Y2

2k k»>C|>Cp>C3

Figure 9.10 Contours of ¥V = ¢ within k.

Case 2a. Let V of (9.56) be negative semidefinite. Then we can show
that the origin of (9.55) is stable since its trajectory which originates in Q, at
time ¢, >0 with initial condition {y(z,)} is always proceeding in a direction
such that the associated ¥ function never increases. More precisely, we must
.mwoi that given any e >0, there is a d(€) > 0 such that ||y(s,) [[<é
implies that || y(r)|| < € for all ¢ > ¢,, where {y(¢)} belongs to Q, according to
Definition 9.1.

For any such €, let V(y,,...,y,) > c for ||y||=¢, where ¢ >0 since
V' is positive definite. We choose a 6 < ¢ such that V(yiy..-» ¥, < ¢ for
Nyl A.&. This is possible since ¥ is continuous and is zero only at the origin.
Since V' < 0, it follows that V(y(r)) < V(y(¢,)) < ¢ for ¢ > t,. Thus Ny || <€
for all ¢ > ¢,.

——
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Case 2b. Let V of (9.56) be negative definite. It is obvious from the
proof of the previous case that the origin of (9.55) is stable. Moreover, a trajec-
tory of (9.55) which originates in Q, is always proceeding in a direction such
that the associated V function is decreasing monotonically. Hence, the trajec-
tories must end at the origin, which is the only absolute minimum point for V.
It follows that lim, ... || y(®)|] — O.

Case 2c. In this case V is negative semidefinite with the additional
requirement for asymptotic stability that no trajectory of (9.55) can stay forever
at the points at which ¥ = 0 other than at the origin. Since V is negative semi-
definite, the origin of (9.55) is stable. As discussed in Examples 9.2 and 9.3, an
oscillatory or periodic motion is represented by a closed hypersurface in state
space. Also, as discussed in Example 9.3, the amplitude and frequency of oscilla-
tion in a conservative system depend on the initial conditions and the origin is
stable. It has been observed that in a bounded region Q,, V' = ¢, where cis a
constant, represents a closed hypersurface in state space, as shown in Fig. 9.10.
In case ¥ = c also represents a hypersurface of periodic motion, then ¥ = 0
along the system trajectory since ¢ is a constant and the trajectory will remain
forever on this hypersurface. The additional requirement that no trajectory of
(9.55) can stay forever at the point, at which ¥ = 0 other than at the origin,
rules out the case V' = ¢ > 0 representing a hypersurface of periodic motion
and it follows that lim,_.. || y(¢) || — 0. Case 2¢ is also referred to as LaSalle’s
theorem, and its rigorous proof is given by LaSalle and Lefschetz [6].

The requirement of Theorem 9.4 that Q, be a bounded region around the
origin is to assure that ¥ = ¢, where c is a constant, is a closed hypersurface in
the state space. If Q, is not a finite region, it is possible that far from the origin,
V = ¢ can represent an open hypersurface. Then it is possible for the trajectory

of (9.55) to escape toward infinity, even when V(y,, ..., y,) is positive definite
and V(y,,...,»,) is negative definite, as illustrated in Fig. 9.11 for a second-

order system.
In case the region Q, is not bounded but extends to infinity, it is required

A

POSSIBLE
TRAJECTORY

C|>Cp>C3

Figure 9.11 Open contour of ¥V = ¢ and possible escape trajectory.
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in Theorem 9.4 that lim ¥V(y,,...,»,) — o as ||y || — co. This requirement is
to assure that ¥(yy,...,»,) = c represent closed hypersurfaces in state space.

For example, in the case of two state variables, a ¥/ function is chosen as

2

ri Y2
w\ﬁ.ﬁ:.ﬁnvu 1 ;{F.uxm + 1 T .u\w

This ¥ function is positive definite but lim ¥ does not tend to infinity as
Iy || — oo. In case the region Q, of Theorem 9.4 is not bounded but lim ¥ — oo,
the origin of (9.55) is said to be globally stable or globally asymptotically stable,
as the case may be. This is also referred to as the theorem of Barbashin and
Krasovskii. It should be noted that the equations of motion may not be valid
throughout the state space because of some assumptions and approximations.
In that case, global asymptotic stability may have no practical significance.

A point to be noted is that Theorem 9.4 provides only sufficient conditions
and in case a suitable Lyapunov function cannot be found, it cannot be implied
that the origin of (9.55) is unstable. A Lyapunov function may be considered as
a generalized energy function and Theorem 9.4 as a generalization of the energy
method of stability investigation. For stability (or asymptotic stability) it is not
necessary that the generalized energy of the perturbation evaluated along the
trajectory be nonincreasing (or monotonically decreasing) at every instant of
time. It is possible for the generalized energy of the perturbation along the
trajectory to increase momentarily with time and yet to decay to zero with time
as shown in Fig. 9.12.

GENERALIZED
ENERGY

MOMENTARILY INCREASING BUT OVERALL
DECAYING FUNCTION OF TIME

MONOTONICALLY
DECAYING FUNCTION

TIME

Figure 9.12 Generalized energy versus time.

Example 9.15

We consider the mass, linear damping, and nonlinear soft spring of Example 6.7,
which is also studied in Example 9.1. The equation of motion is given by (9.12). In
Examples 6.7 and 9.1, the three isolated equilibrium states have been found as

= R 1)
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Stability of equilibrium state (0, 0). The perturbation equations about this
equilibrium are given by (9.13), from which the A matrix is obtained as

0 1
A=l_k _c
m m
The characteristic equation becomes
I Alejza €k _
[Al —A| =22 + s\fq =0 9.57)
The Routh array is given by
1 K
m
< 0
m
k
m

Since all three elements of the first column have the same sign, we conclude that
both eigenvalues of (9.57) have negative real parts. From (9.13) we note that
lim [|h() |//[l¥y]] = 0 as ||y|] — 0. Hence, from Theorem 9.1 we conclude that equi-
librium (0, 0) is asymptotically stable for sufficiently small perturbations. We now
determine the size of the region of asymptotic stability around this equilibrium state
by application of Theorem 9.4, A candidate for the Lyapunov function is the total
mechanical energy of the perturbations. The kinetic and potential energies are obtained
as

1

E 2
T 5 my

Quhiw[mv&
g

The ¥V function in terms of the state variable (y; = y, y, = ») becomes

VyL,y) =T+ U

1 1 2
= i+ k(1 = H) (9.58)
This ¥ function is positive definite for |y;| << 4/12. However, in order to determine
the region Q of stability, it is required to determine the region where

1 1 2
V= 5my} -+ @\QWA - wl_v =c
represents a closed curve. Now, 1my3 = ¢ has a solution for all values of y, and hence

¥V = ¢ does not open along the y, axis. But 3ky?#1 — (y%/12)] = ¢ has a real solution
up to a maximum value of y,. Differentiating this expression with respect to y, and
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solving for y;, this maximum value of y; is +.,/6. Hence, ¥V = c represents closed

curves for
1 6 3
¢ = 5 k6(1 = )= 7%

The bounded region  in which ¥ — ¢ represents closed curves is given by

Q=L Ly NA \NWVAW\« 9.59)
k — N 34 2 Vi wN )
Differentiating (9.58) with respect to time, we obtain

. 3\

V= mygs + k(v - %0 (9.60)

In order to evaluate ¥~ along the system trajectory, we substitute for y; and y, in (9.60)
from the right-hand side of (9.13) and get

3
V= SENAlW\M\u: + %:EW - wu\nv + \«Au: - ﬁvww = —cy3 (.60a)

This J is negative semidefinite and ¥ = 0 all along the y; axis. Now, y, = 0 and
y, = f(7) does not satisfy (9.13) except for y, = 0; thatis, a trajectory of (9.13) cannot
remain forever on the y; axis except at the origin. We therefore conclude from Theorem
9.4 that the origin of (9.13) [i.., the equilibrium state (x; =0, x, = 0)] is asymp-
totically stable and the region of asymptotic stability is given by (9.59), which is shown
in Fig. 9.13.

V>(3/2)k

3k

//

Figure 9.13 Region of asymptotic stability.

Stability of equilibrium states (,/6,0) and (—./6,0). The voicncmao.s
equations about these equilibrium states are given by (5.14), from which the A matrix

is obtained as
0 1

>HW\M c

m m

The characteristic equation is obtained as

_ﬁ1>_uﬁ+\q~m»1w~wu (9.61)
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The Routh array becomes

3o

_ak
m
There is one change in sign in the first column of this array, and we conclude that
(9.61) has one root with positive real part. Hence, from Theorem 9.1, the origin of
(9.14) [i.e., equilibrium states (,/ 6 , 0) and (—./ 6, 0)] are unstable. The application of
Theorem 9.4 for these equilibrium states is therefore meaningless.

Example 9.16

The tumbling motion of a rigid-body satellite was discussed in Example 9.8 and the
equations of motion given by (9.28). In order to study the stability of a steady rotation
about one of the axes, the motion was perturbed and the perturbation equations given
by (9.30). By application of Theorem 9.1 it was shown in Example 9.8 that a steady
rotation about the intermediate principal axis is unstable. However, Theorem 9.1 does
not yield any information on the stability of steady rotation about the largest or
smallest principal axis, and this is studied in this example by application of Theorem
9.4. A function A(y,, y,, y3) which becomes a constant when y,, y,, and y; represent
solutions of (9.30) is called a first integral of the differential equations (9.30). Thus, we
have

h(y1, ¥, y3) = const. (9.62)

_ Ok, Ok b
= -+ R + s 0 (9.63)

It is known [7] that (9.30) has two first integrals given by

h

I, —1 I, —1 ,
h=-=2 T tyi+ =2 7,73 = Wt + Lyd 4 Ly 2Ly (9.64)
We choose one of these as a candidate for the Lyapunov function and obtain
I, — 1 I, — 1
V(y1, 72, y3) = = T Ly 4+ =2 T Ly} + iyt + 129} + Ly3 + 2e11;y1)?

This V function is positive definite throughout the entire state space if I, < I, << I;.
Furthermore, lim ¥ — oo as ||y|| — oo. Since this ¥ function is the first integral, it
follows from (9.63) that ¥ evaluated along the trajectory of (9.30) yields 7 = 0. Since
¥ = 0 throughout the entire state space, asymptotic stability cannot be proved and we
conclude that a steady rotation about the smallest principal axis is globally stable. In
order to investigate the stability of steady rotation about the largest principal axis, we
choose a V function from (9.64) as

I — 1 Iy — I
V(y1,¥2, 1) = Wﬁ 2 T Ly3 + 2 T Ly$ — iyt + Lyd + Ly} + NGLQ_L

This ¥ function is positive definite throughout the state space if [; > I, > I3, and V'
evaluated along the trajectory of (9.31) yields ¥ = 0 throughout the entire state space.
Hence, steady rotation about the largest principal axis is globally stable.



316 Stability of Motion Chap. 9

Example 9.17 . .
The equations of motion for a spring pendulum have been derived in Example 5.11.
Now, let the spring be replaced by a rigid massless rod of length a. Then, from (5.103)
the equation of motion for a damped simple pendulum becomes

ma* + @ + mgasin@ =0 (9.65)

Letting x; = @ and x, = 0, we express (9.65) as
f= (9.66)

X g sin x < x
*2 T T U ma??

The equilibrium states are obtained by setting the left-hand sides of the mow.omowa.m
equations to zero (i.e., X, =0 and x,, = +-km, where k =0, 1,2,...). These equi-
librium states are shown in Fig. 9.14.

X2

g — " - X

Figure 9.14 Equilibrium states of a simple pendulum.

Let us consider the stability of the equilibrium state (0, 0). Denoting the pertur-
bations about this equilibrium by y; and y,, the perturbation equations become

Pr=r2 (9.67)

= —£ sin ||n|‘<
2= T, Y1 maz”?

<.

The Jacobian matrix A about this equilibrium is given by
0 1
> = W C

and the characteristic equation by
AL—Al=2 -S4+ £ =0

The Routh array is obtained as

R T
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Hence, both eigenvalues of A have negative real parts and according to Theorem 9.1,
this equilibrium is asymptotically stable for sufficiently small perturbations. We now
obtain the region of asymptotic stability around this equilibrium by employing Theo-
rem 9.4. The total mechanical energy of the perturbations is chosen as a candidate for
the Lyapunov function. Hence, we get

V(y1,y2) =T+ U
= tma’y% + mga(l — cos y;) (9.68)

This V function is positive definite for |y; | < 2m. We have to determine the region in
which V = ¢ represents a closed curve.

Now, tma*y3 = c has a solution for all values of y, and hence ¥ = ¢ does not
open along the y, axis. But mga(l — cos y;) = ¢ has a real solution for y; up to a
maximum value of y; which is +7. The maximum value of ¢ for which ¥V = ¢ repre-~
sents a closed curve is 2mga. Therefore, the bounded region Q; in which V' =¢
represents a closed curve is given by

Qi = {ma?y} + mga(l — cos y;) < 2mga (9.69)
Differentiating (9.68) with respect to time, we obtain
V = may,p, -+ mga(sin y1)

In order to evaluate 7 along the system trajectory, we substitute for y; and y,

in the foregoing equation from (9.67) and get
V= S%EA\W sin y; lshantv + mga(sin y)y, = —cy}

This ¥ is negative semidefinite and ¥ = 0 all along the y; axis. Now, y, = 0 and
¥y = f(¢) does not satisfy (9.67) except for y, = 0 [i.e., a trajectory of (9.67) cannot
remain forever on the y, axis except at the origin]. We therefore conclude from Theo-
rem 9.4 that the origin of (9.67) [i.e., the equilibrium state (x; = 0, x, = 0)] is asymp-
totically stable and the region of asymptotic stability is given by (9.69), which is shown
in Fig. 9.15. It should be noted that the region of asymptotic stability that is obtained
is strongly dependent on the choice of the Lyapunov function.

¥2

2v/g/a

-2/¢/a .

Figure 9.15 Region of asymptotic stability,
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Let us consider the case of an undamped simple pendulum where ¢ = 0 in
(9.65) and (9.66). The equilibrium states as shown in Fig. 9.14 are unchanged. Choosing
a V function as in (9.68), we find that this V function is positive definite for |y| < 2x
and V = c represents a closed curve in the bounded region given by (9.69). However,
V evaluated along the system trajectory becomes ¥ = 0 (i.e., negative semidefinite
throughout the state space). Hence, we conclude that the equilibrium (x; = 0, x, = 0)
is stable and (9.69) represents the region of stability. As is well known, the undamped
simple pendulum is a conservative system and undergoes oscillations in the region
Q. whose amplitudes and period depend on the initial conditions.

We now consider the equilibrium state (x; = @, x, = 0). The perturbation
equations about this equilibrium state are given by

Y1 =12

c
ma?

Enﬂ|mmmdﬁn+§v| Va2

The Jacobian matrix A about this equilibrium is given by

0 1
A=lg __c
a ma?
and the characteristic equation by

MM—Al=22+-521-£ -0
ma a

The Routh array is obtained as

Hence, matrix A has one eigenvalue with positive real part and according to
Theorem 9.1, the equilibrium (x; = 7, x, = 0) is unstable. This equilibrium is also
unstable for the undamped pendulum. Similarly, for the damped simple pendulum,
we can show that the equilibrium states (x; = k=, x, = 0) are asymptotically stable
fork=0,2,4,...and unstable for k =1, 3,5, ...

9.5.1 Generation of Lyapunov Function for Linearized
Autonomous Systems

The perturbation equations about an equilibrium or stationary motion for
the autonomous case are represented by (9.24). Considering small perturbations
and letting {#} — {0}, the linearized equations are obtained as

{r} = Aly} (9.70)
For this linear autonomous system (9.70), a Lyapunov function that is a
quadratic form in y,,...,y, is both necessary and sufficient for asymptotic
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stability of the origin of (9.70). If matrix A is nonsingular, then (9.70) has only
one equilibrium state which is the origin and the region of asymptotic stability is
global. But the global nature of asymptotic stability should not be taken liter-
ally because the perturbations are about a particular equilibrium, and lineariza-
tion implies that the perturbations are small. The existence of a quadratic
Lyapunov function is of little consequence for the stability investigation of the
origin of (9.70) since the application of the Routh criterion is much simpler.
However, use will be made later of this quadratic function for the stability
investigation of the origin of the nonlinear system (9.24).

We chose a quadratic form as a candidate for the Lyapunov function and
let

Vye, oo o yn) = P} 9.71)
where without loss of generality P is a symmetric matrix. Then,

V=UYPL + (1P}
and after substituting for {y} from the right-hand side of (9.70), we obtain

V= ATP{y} + [}"PA{y}

= {V}"(A"P + PA){y}

= —{FQiy} 9.72)
where matrix Q is defined by

AP + PA — —Q (9.73)
Equation (9.73) is known as the matrix Lyapunov equation. Because P is a
symmetric matrix, it follows that
Q7 = —(ATP 4 PA)" = —(PTA + ATP7)
— —(PA + A"P) = Q

(i.e., matrix Q is also symmetric). It can be proved [6, 8], that:

1. Equation (9.73) has a unique solution for P corresponding to every Q if
and only if the sum of any two eigenvalues of A is not zero. (Note that if
all eigenvalues of A have negative real parts, this condition is satisfied.)

2. If Q is positive definite and all eigenvalues of A have negative real parts,
P is also positive definite.

It is noted that if Q is positive definite, the condition that P is positive
definite is a sufficient condition for the stability of (9.70) since (9.71) becomes a
Lyapunov function. In addition, the foregoing proposition 2 states that if Q is
positive definite, a necessary condition for the stability of the origin of (9.70) is
that P be positive definite. We select Q to be positive definite (in particular, Q
may be selected as the identity matrix) and solve for P from (9.73). If this P is
not positive definite, the origin (9.70) is unstable and if it is positive definite, the
origin of (9.70) is globally asymptotically stable. The reverse is not true; that
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is, if P is chosen as positive definite, it does not follow that Q obtained from
(9.73) will be positive definite when all eigenvalues of A have negative real parts.
If the reverse were true, it would be far easier to solve for Q for a given P from
(9.73) since it involves only matrix multiplication and addition. The determina-
tion of P from (9.73) for a given Q involves the solution of 1n(n + 1) equations
since matrices P and Q are symmetric.

Proof of Theorem 9.1. In Section 9.3 it was mentioned that proof of
Theorem 9.1, which is also call Lyapunov’s first method, can be provided by
Lyapunov’s second method. The perturbation equations about an equilibrium
or stationary motion for the autonomous case are represented by (9.24):

(7} = A} + (e, - YD) 9.24)

where by assumption lim ||hi|/||y|| = 0 as [[y|| — O or || h|| goes to zero faster

than ||y|l-
We choose a quadratic form as a candidate for the Lyapunov function

and obtain
V(yir -5y = WP} (9.74

where P is symmetric. Evaluating V along the trajectory of (9.24), we obtain
V= {yPy} + P}

O = (Aly} + (hD"Py} + FPAY} + (7D

N '\ = (yI"ATP{y} + (B"P{y} + {y}Y'PA{y} + {y}"P{A}

i — DF(ATP + PAYY} + 2{y}"P(A)

J = — ()" QUy} + 201P(A} (9.75)

-~ We choose Q as a positive-definite symmetric matrix. By assumption |{h||

goes to zero faster than ||y ||. Thus in a sufficiently small region about the origin,
the first term on the right-hand side of (9.75) will be dominating and V will be
negative definite. If all eigenvalues of A have negative real parts, then after
solving for P from (9.73) we will find that (9.74) is positive definite and hence a
Lyapunov function. Then at least in a sufficiently small region, the origin of
(9.24) will be asymptotically stable according to Theorem 9.4.

If A has at least one eigenvalue with positive real part, we give the proof
here only for the case where the sum of any two eigenvalues of A is not zero.
The proof for the general case can be obtained from the one given here by using
continuity argument. In this case the equation AP + PA =1 has a unique
solution for P and this matrix P has at least one positive eigenvalue. Then by
choosing ¥, = {y}"P{y}, there exist points arbitrarily close to the origin such
that ¥, > 0 and V, is positive definite. Hence, by Lyapunov’s first instability
theorem given later, the origin of (9.24) is unstable.

In case A has one or more eigenvalues with zero real parts and the remain-
ing eigenvalues have negative real parts, the stability of the origin of (9.24)
cannot be ascertained from the linearized equations.
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Theorem 9.5: Lyapunov’s First Instability Theorem. For the system
(9.24), the origin is unstable if there exists a function V,(y,,...,y,) with con-
tinuous first partial derivatives such that (a) V, evaluated along the system
trajectory is positive definite and (b) V,(0, ...,0) = 0 and there are points {y}
arbitrarily close to the origin such that V,(y,, ..., ) > 0.

The proof of this theorem is straightforward and is given by Hsu and
Meyer [1] and by Vidyasagar [2].

9.5.2 Generation of Lyapunov Function for Nonlinear
Autonomous Systems

The success of the Lyapunov second method depends on the selection of a
suitable Lyapunov function. It is also clear that the estimate of the domain of
stability or asymptotic stability is directly dependent on the choice of the
Lyapunov function. An interesting question is whether the total mechan-
ical energy of a dynamic system is useful as a Lyapunov function. The total
mechanical energy is given by E = T + U, where T is kinetic energy and U is
the potential energy. As seen in Chapter 5, a general expression for the kinetic
energy is of the form T'= T, 4+ T, + T,, where T is a quadratic function of the
generalized velocities, 7, is a linear function of generalized velocities, and T,
is not a function of the generalized velocities but only of the generalized coor-
dinates. If the total mechanical energy is selected as the Lyapunov function,
this ¥ function will not in general be a quadratic form and there will be serious
difficulties in determining its sign definiteness. We note that Sylvester’s theorem
(Theorem 9.3) is applicable to the determination of sign definiteness of quad- "
ratic forms only and that for general nonquadratic functions, such ﬂoorsﬁ,dnm
are not available.

In case T, = T, = 0 and T = T,, the difficulties are considerably reduced
but not completely eliminated because the potential energy U need not be a
quadratic function of the generalized coordinates. In Chapter 5 it is shown that
a general Hamiltonian function is defined by H = T, — T, + U and is not the
total mechanical energy. In case T, = T, = 0, then H =T + U = E. When
the generalized coordinates and generalized momenta are selected as state vari-
ables and the equations of motion are expressed by Hamilton’s equations, let
the perturbation equations about an equilibrium or stationary motion be
described by

, _OH
7= op,

. oH ,
PH|®M+©: i=1,...,m

(9.76)

It is assumed that the generalized forces are dissipative forces given by
0, = —c,g;, where ¢; > 0 but there is at least one ¢; > 0. Tt is further assumed
that H = T, + U. In case we can show that H is positive definite in a bounded
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region Q, around the origin in which H << k where k > 0, we choose H as the
Lyapunov function. Now ¥ evaluated along a trajectory of (9.76) is obtained as

V=H-— M& Q_+M%F+ww (9.77)

But in this case, 0H/dt = 0 and substituting for ¢, and p, in (9.77) from (9.76),
we get

; dHdH JHOH B,

V= M _H%|&l_ QIP - %|F m|®~ + QN.S.H_ = M,L C:q; (9.78)
In case all ¢, > 0, then this V is negative definite and the origin of (9.76) is
asymptotically stable and ), is an estimate of the region of attraction. In case
some but not all ¢, are zero, ¥ becomes negative semidefinite and if we can .mwoé
that a trajectory of (9.76) cannot remain forever at the points where V' = 0
except at the origin, we can still conclude that the origin of (9.76) is asymp-
totically stable in Q,.

Alternatively, when generalized coordinates and generalized velocities

are chosen as the state variables, let the perturbation equations be described by

d (0L JdL .
() — 5= =0 =1,...
&N A%Q.«v %Q— i [ s b m
where Q, is restricted as in the foregoing. Choosing the Lyapunov function as
V= Mma G —L(qyy oo s Qs Gy e v e s Gr) 9.79)

we obtain

M TN va ¢+ wws w|w_a._. _ ww L

= W:AQMV||WWQ&

=¥ 04, (9.80)

This procedure may be considered as the generalization of the procedure
employed in Examples 9.15 and 9.17, where total mechanical energy was
employed as a Lyapunov function. For conservative systems, Q; = 0 and hence
it follows that ¥ = 0 (i.e., ¥ is negative semidefinite throughout the state space).
Assuming that 7= T,, we choose a Lyapunov function as V' = T + U. If the
potential energy U has a local minimum at the origin, there is a region around
the origin in which U > 0. Hence, there exists a region Q, around the origin in
which V is positive definite whereas V is negative semidefinite and the origin is
stable. This special case is known as Lagrange’s theorem, which states that in
conservative systems when T = T, an equilibrium state is stable if the potential
energy at that point is a local minimum.

The technique of generating Lyapunov functions has received considerable
attention in the past and several methods have been proposed in the literature

Ms
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[9-11]. Most of the methods are not very general and are restricted to very special
system configuration, such as a single-degree-of-freedom system with nonlinear-
ities of a special kind. A discussion of these methods is not given here. In engi-
neering systems with multiple degrees of freedom, closed-form expressions
defining the stability boundary can rarely be obtained. An effective computa-
tional procedure is desireable for estimating the domain of attraction.

In the following, a computational procedure is described for quadratic
estimation of the domain of attraction of the origin of (9.24) when the associated
linearized system (9.70) is found to have asymptotically stable origin by applica-
tion of Theorem 9.1. A quadratic estimate yields a hyperellipsoid for the
domain of attraction which can be visualized much more readily than the hyper-
volumes of the higher-order estimates. A quadratic function is chosen as a
Lyapunov function:

V= )Py} (9.81)
Then V evaluated along a trajectory of (9.24) yields
V= DI(AP + PAYY) + 207P{A) (9.82)
Let
AP + PA = —Q (9.83)

We select Q as positive definite. Then P obtained from the solution of
(9.83) is also positive definite since the origin is assumed to be asymptotically
stable for sufficiently small perturbations. Also, ¥ will be negative definite at
least in a sufficiently small region around the origin since {/} consists of higher-
order terms in y,, ..., y,. Since A is a stable matrix, every positive definite Q
will result in a positive definite P. Theorem 9.4 requires that ¥ be negative
within a region Q,, exclusive of the origin. The selection of the largest such Q,
is equivalent to finding the minimum of ¥ on the surface ¥ = 0 (i.e., minimum
V = ¢ subject to the constraint ¥ = 0, {y} 0).

At the point of tangency of the ¥ and ¥ = 0 surfaces, the gradients of ¥
and ¥ are in the same direction as shown in Fig. 9.16, Hence, we obtain

VV=kVy (9.84)

where k is an unknown constant. In addition, the equation ¥ = 0 has to be
satisfied. Hence, we obtain

WV _ 9
0y, 0y,
. (9.85)
oV _ 9V
0y, 9y,
V=0
These are (n + 1) nonlinear algebraic equations in the (7 + 1) unknowns
Yis - -+ Vas k. A solution of this set of nonlinear algebraic equations may be
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V=Cy
V=Cso
V=C3z

Figure 9.16 Solution for the tangent point.

obtained by employing an appropriate digital computer program such as the
Newton—Raphson method. Let the minimum value of V evaluated at the solu-
tion point be ¢. Then, V = {y}JP{y} = c is the hyperellipsoid which is an
estimate of the domain of attraction Q,. This domain is a function of P or
equivalently of Q and it is desirable to find the optimal value of this domain.
The optional estimate is given by that choice of Q which maximizes the volume
of Q. This volume is proportional to

n 1/2 " 1/2
JQ) =|——| = (9.86)
EE e

=1
where A,(P) are the eigenvalues of P, # is the dimension of {y}, and the expres-
sion J(Q) is the product of the principal axes of the hyperellipsoid £,. H.ro
optional quadratic estimate of the domain of attraction is given by that choice

of Q that maximizes the volume of Q,.
Summarizing, the procedure involves the following steps:

1. Generate arbitrary elements of the Q matrix.

2. Solve the Lyapunov matrix equation (9.83) for P.

3. Find ¢ which is the minimum value of ¥ subject to the constraint that
¥ = 0 by solving the nonlinear algebraic equations (9.85).

4. Optimize Q by calculating J(Q) from (9.86) and repeating with a new
positive Q until no further improvement is made in J(Q).
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9.6 STABILITY IN THE LARGE OF NONAUTONOMOUS
SYSTEMS

It has been observed earlier that the perturbation equations become autono-
mous when the equations of motion are autonomous and the stability under
consideration is that of an equilibrium or stationary motion. When the stability
of a time-varying motion is to be considered, the perturbation equations as
given by (9.45) are nonautonomous. Let the perturbation equation be described
by

m.v@ = MN‘A!T s Vns NVM A@@Qv
where g, are nonlinear functions of their arguments and are explicit functions of
time. The stability of the time-varying motion {x*(¢)} is new equivalent to the
stability of the origin of (9.87). Even when a V function is chosen that is not an
explicit function of time, the time derivative V evaluated along a trajectory of
(9.87) will be an explicit function of time. Because ¥ and possibly V are explicit
functions of time, some modifications are required to the definitions of sign
definiteness and to Theorem 9.4. The functions ¥ and V are suitably bound by
scalar functions that are not explicit functions of time.

Definition 9.14. A time-varying scalar function V(y,, . .., y,, {) is positive
definite in a region Q) containing the origin if V(0, ..., 0,7) = 0 and if a continu-
ous and nondecreasing function ¢ exists such that ¢(0) = 0 and V(y4,..., ¥, 1)
> ¢(|y[) in Q, where ¢(x) > 0 for x > 0. A strictly increasing function ¢(x)
obeys the property that for x, > x;, ¢(x;) > @(x;). A function V(y,..., ¥, 1)
is called negative definite if —V(y,, ..., y,, t) is positive definite.

Definition 9.15. A time-varying scalar function V(y,,...,y,, ) is called
decrescent in a region Q containing the origin if a continuous and nondecreas-
ing function y exists such that w(0) = 0 and

V(¥is -5V ) < w(ly|D)in Q, where y(x) > 0 for x > 0

We note that a positive-definite decrescent function V(y,,...,»,, {) must
dominate the function ¢ and be dominated by the function y as shown in Fig.
9.17. A function that is positive definite but not decrescent can become arbitra-
rily large for || y|| arbitrarily small. Some authors use the more stringent require-
ment that ¢ and y in Definitions 9.14 and 9.15, respectively, are strictly
increasing functions.

Example 9.18
Consider the following function for a system with two state variables:
V(y1,y2, 1) = y¥(1 + sin? 1) + p3(1 + cos??) (9.88)

We may choose the ¢ and y functions as

B(lylD = »t +ww = [ly]|?
wdlylD = 2yt + 23 = 2|y
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FUNCTION
vy
<A<_ ~<N....J<3.3
S(ly1)
nyt
Figure 9.17 Positive-definite decrescent function, V(y1, ..., ¥a ).

Hence, the V function (9.88) is positive definite and decrescent. Now let
Vi, 70 =y +0 +6»3, t>0 9.89)
We choose the same ¢ function but a y function cannot be found since this ¥
function can become arbitrarily large for arbitrarily small ||y|| = 0. Hence, the V
function of (9.89) is positive definite but not decrescent, When V(y4, ..., y,) is not an
explicit function of time, positive definiteness requires only that ¥ = 0 Fa ly]l=0
and ¥V > 0 for ||y|| £ 0. For ¥, which is an explicit function of time, } evaluated
along a trajectory of (9.87) becomes
N V1 4
V=2 st

=1

= {(VITe} + w|w (9.90)

We now state the following theorems concerning the stability of the origin
of (9.87).

Theorem 9.6. If there exists a continuously differentiable positive-defi-
nite scalar function V(y,, ..., y,,?) in a region Q containing the origin such that
V(31,5 ¥mt) < 0in Q, then the origin of (9.87) is stable at time #, > 0 and
Q is the domain of stability for ¢ > ¢,.

Theorem 9.7. If there exists a continuously differentiable positive-
definite and decrescent function V(y,,...,¥,,¢) in a region Q containing the
origin such that P(y,, ..., ., t) < 0in Q, then the origin of (9.87) is uniformly
stable at time ¢, > 0 and Q is the domain of uniform stability for ¢ > ¢,.

Theorem 9.8. If there exists a continuously differentiable positive-definite
and decrescent function ¥(y,. .., ¥, t) in a region Q containing the origin such

= Tr——r—
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that ¥(y,,..., v, ?) is negative definite in Q, then the origin of (9.87) is uni-
formly asymptotically stable at time 7, > 0 and Q is the domain of uniform
asymptotic stability for ¢ > ¢,.

Theorem 9.9. If in Theorem 9.8, the region Q is the entire state space,
and in addition the function ¢(|y ) dominated by ¥(y,, ..., Yus 1) 1s such that
#(|yl) — oo as||y|| — oo and the function w(|y ) dominating ¥(y,,...,y,,?)
is such that y(||y|[) — oo as ||y|| — oo, then the origin of (9.87) is globally
uniformly asymptotically stable.

It should be noted that these theorems provide only sufficient conditions.
In Theorem 9.6, merely requiring that ¥ > 0 for all {¥l=0andall t > ¢, is
not sufficient to guarantee stability even when ¥ << 0. When V is an explicit
function of time, as long as d¥/d¢ in (9.90) is negative and less than v Vit{g), V
will be negative. It is possible to have ¥ < 0 while the trajectory moves outside
the bounding region Q. With (y,,...,y,, 1) > ¢ (¥ D, this behavior can no
longer occur. In order to prove Theorem 9.6, we have to show that given any
€ > 0, there can be found a & which may be a function of € and t, such that
Definition 9.1 is satisfied.

To prove Theorem 9.7, we have to show that & does not depend on ¢, and
hence require that ¥ be also decrescent. To prove Theorem 9.8, we need to
show that in addition every trajectory of (9.87) converges to the originas t — oo
uniformly in ¢, and [|y(#,) || in Q, and hence require that ¥ be negative definite
[i.e., there exists a nondecreasing function  such that 8(0) = 0, 0(x) > 0 for
x>0and —V(y,,...,y, 1) > 0(|y|) in Q). The proofs of these theorems are
given by Vidyasagar [2] and Hahn [9].

It is rather difficult to determine whether a given function is positive defi-
nite from Definitions 9.14 because of the need to exhibit the function ¢ A
continuous function ¥(y,,...,y, t) which is an explicit function of time is
positive definite if we can find a positive definite function W( Y15 ---,¥,) which
is not an explicit function of time such that ¥(y,,..., Yo )= W(yis...,y,)in
Q for all £>>0. For W to be positive definite, it is only required that
w@,...,0)=0and W(y,,...,y,) > 0for|y| 0.

A final remark about Theorems 9.6 and 9.7 is that in case a trajectory of
(9.87) cannot remain forever at points where ¥ — 0 except at the origin, then it
is not true in general that the origin is asymptotically stable. We have seen from
Case 2c of Theorem 9.4 (LaSalle’s theorem) that it is true for autonomous sys-
tems. In the nonautonomous case, it is true when all the time-varying coefficients”
are periodic in time.

Example 9.19[2]

Consider a linear time-varying parameter system known as a damped Mathieu equa-
tion described by .
X+x+@+sin)x =0, t>0 9.91)
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In state-variable form, we have

1T 9.92)
X, = —(4 +sin)x; — x,

The only equilibrium state is given by x,, = 0, x,, = 0 for all ¢t > 0. Letting y, and
y, be the perturbations about x;, and x,., respectively, the perturbation equations are
described by
Y1 =2 . (9.93)
Vo= —@ +sinthy, — ya
We choose a candidate for the Lyapunov function as

y3

V(y1, Y2, ) =yi + T3 st

This ¥ function is continuously differentiable. Also, ¥ dominates the positive-definite
function

2
Wiy, y2) =yt + %

and is dominated by the positive-definite function
Wiy, y2) =yt + 3
Hence, this V function is positive definite and decrescent. Then,

; . 2y,y cost
V(yi,y, ) =291y + 3 ._VHNMMMN - (@ fsin Opwm

Substituting for ; and y, in the foregoing equation from (9.93), it follows that

. 2 . cos ¢t
YQ:&?&HN\&J._. %HIQ + sin)y; — y2] — %ww

. 22(4 +sing) + cost
= T @ Fsing)?

_ _.,8+2sint+ cost
T T @ +sinn?

<0

Hence, according to Theorem 9.7 the origin of (9.93) [i.e., the equilibrium (x; = 0,
x5 = 0) of (9.92)] is uniformly stable. Now, ¥ = 0 all along the y, axis where y, = 0,
which from (9.93) implies that y; is a constant and hence (4 + sin c\f = 0. Then
y1 = 0 and a trajectory of (9.93) cannot remain forever at points where V' = 0 except
at the origin. Since the time-varying coefficient in (9.93) is periodic, we conclude that
the origin of (9.93) is uniformly asymptotically stable. Furthermore, both W, — oo
and W, — oo as ||y || — co. Hence, the origin of (9.93) is globally uniformly asymp-

totically stable.

Mathieu—Hill equation. The example just considered belongs to a
more general class of equations described by
%+ a1l +2bp(H)}x =0
where p(¢)is a periodic function of time and a and b are parameters reflecting the
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system properties. This equation is known as the undamped Hill equation
or Mathieu-Hill equation. The corresponding linearly damped equation is
described by

X+ ex + gl + 2p()lx =0

Mathieu-Hill type of equations are encountered in many areas of engi-
neering, celestial mechanics, and theory of parametrically excited oscillations.
For such second-order equations with periodic coefficients, Floquet’s theory
provides a form of solution which is useful to investigate the stability boundary
in the parameter space. Interested readers may consult references [12] and [13]
for this purpose.

Generation of Lyapunov functions for nonautonomous sys-
tems. It has been observed earlier that there is a lack of general procedures
for the generation of Lyapunov functions for nonlinear autonomous systems.
This difficulty is compounded in the case of nonautonomous systems. It was
shown that for linearized autonomous systems, a Lyapunov function is of the
quadratic form. Even for the linearized nonautonomous equation { y} = A(®){y},
a systematic procedure for the selection of a Lyapunov function is lacking.
Some methods have been proposed in the literature but they yield very conser-
vative results, if any. It is a small help to the designer of an automobile to know
that a lane-change maneuver of an automobile is stable if the speed is 5 km/h.
The designer would have to know the limit velocity at which the lane-change
maneuver becomes unstable so that the design can be improved dynamically and
the limit velocity can be raised.

Hence, direct integration of the equations of motion by computer simula-
tion offers an attractive alternative for the stability investigation of a general
time-varying motion. But computer simulation requires considerable caution,
as seen in Chapter 7. The instability exhibited by the computer simulation may
turn out to be numerical instability, especially in nonlinear systems, and not
physical instability. Some integration techniques may introduce numerical
damping and stabilize a physically unstable motion. In nonlinear systems,
superposition becomes invalid and if a motion is stable for one set of initial
conditions, it does not imply that the motion will remain stable when the initial
conditions are changed. Hence, the determination of the domain of stability by
computer simulation becomes a time-consuming task.

9.7 SUMMARY

In this chapter we have studied the stability in the sense of Lyapunov of equi-
librium states, stationary motions, and time-varying motions. The three basic
concepts of Lyapunov theory are stability,.asymptotic stability, and instability.
In the autonomous case, stability and asymptotic stability are always uniform,
but in the nonautonomous case, a distinction must be made between stability
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and uniform stability. There are some applications where the concept of stabil-
ity, in the sense of Lyapunov, is not an appropriate one. The concept of orbital
stability has been introduced and it is appropriate for the stability of periodic
motion and limit cycle oscillations. However, orbital stability has not been
further employed in this chapter.

In the earlier part of this chapter, we studied a method whereby the stabil-
ity of a nonlinear system is ascertained by assuming that the perturbations are
sufficiently small and linearizing the perturbation equations. This method is
also known as Lyapunov’s first or indirect method. It is commonly employed in
many fields of engineering. It is a recommended first step for autonomous sys-
tems when it is applicable.

The basic feature of Lyapunov’s second or direct method is that stability
is investigated without solving the system equations by selecting a suitable
Lyapunov function. This Lyapunov function may be regarded as a generalized
energy and in many dynamic systems, the total mechanical energy is a candidate
for the Lyapunov function. A serious disadvantage of the method is that there
is no systematic procedure for the generation of Lyapunov functions and this
difficulty is compounded for nonautonomous systems. The theorems present
only sufficient conditions for various forms of stability and if a suitable Lya-
punov function cannot be found, no conclusions can be reached regarding
stability. This is a very serious drawback of Lyapunov’s second method.

PROBLEMS

9.1. The motion of a particle of mass m is resisted by a force that is proportional
to the exponential function of its velocity v so that the equation of motion is
described by

my +ce* =0
Investigate the equilibrium state(s). State, giving reasons, whether Lyapunov
stability theory can be employed to investigate the stability of the equilibrium
state(s).
Consider the system of Example 3.4 except that the Coulomb friction is replaced
by viscous damping and P = 0. Hence, (3.26) is modified but (3.27) remains
unchanged. Thus, the equations of motion are described by

9.2

my% + my%sin2 @ — m,gsinf cos 0 — myb02sin @ + cx =0
my% cos @ + mbl + mygsin@ =0

(a) Determine the equilibrium states.

(b) By employing Theorem 9.1, investigate the stability of the equilibrium state
(x = constant, * = 0, § = =, 6 = 0) for small perturbations.

A boom that may be considered as a slender rod of length b and mass m is being

transported on a crawler which is moving in a straight line at a constant velocity

v (Fig. P9.3). The boom is pivoted at 4, where there is viscous friction, and

attached to the crawler frame at B by a linear spring of stiffness k. When the

9.3
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V=CONST.

Figure P9.3
boom is displaced through an angle @, the kinetic and potential energies are
given by
J— H 2 -N
1

2

(a) Obtain the equation of motion of the boom.

(b) Determine the equilibrium states.

(¢) By employing Theorem 9.1, determine the condition relating k, m, b, and g
for asymptotic stability of the equilibrium state (§ = 0, 0 = 0) for small
perturbations.

kb2 sin2 § — s%@c — cos 6)

9.4. The Lagrange equations of motion for the spring pendulum of Example 5.11 are
given by (5.102) and (5.103).
(a) Obtain all the equilibrium states.
(b) By employing Theorem 9.1, investigate the stability of the equilibrium states
for small perturbations.

9.5. Determine the sign definiteness of the following functions. In each case, 7 is the
number of state variables.
@) V(xy, x5, x3) = x} +4xyx, + x5 +x,x3 +3x3  n=3
(b) Vxy, x2, x3) = xt + xix3 n=3
© Vixy,xz) = xt + dxt + xyx; + x3 n=2
9.6. A mass m is suspended between two linear springs, each of stiffness & (Fig.
P9.6). The friction force is due to Coulomb friction. The equation of motion is
given by
mxi—+csgnx +2kx =0
By considering the total mechanical energy as a Lyapunov function,

investigate the stability of the equilibrium zone and the size of the region of
stability.

Figure P9.6
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9.7.

9.8.

9.9.

9.10.

Stability of Motion Chap. 9

Consider the mass—spring system shown in Fig. P9.7(a). The spring charac-
teristic shown in Fig. P9.7(b) can be modeled such that the spring force is given
by k | x| x. The equation of motion becomes

mi+ kx|x|=0

Choosing the total mechanical energy as a Lyapunov function, show that
the equilibrium state (x = 0, ¥ = 0) is stable and obtain the region of stability.

SPRING
FORCE

(a) (b}
Figure P9.7

The Van der Pol equation is described by (9.16). By choosing a ¥, function as
V.(x1, x2) = x? + x3 and employing Theorem 9.5 show that the origin (x; = 0,
x, = 0) is an unstable equilibrium point.

The tumbling motion of an orbiting rigid-body satellite about its center of mass,
where the tumbling rate far exceeds the orbiting rate, is described by the Euler
equation (4.47). It is desired to stop the tumbling by applying control torques
proportional to the angular velocities (i.e., M; = —k,0,, Mz = —k,0,,
M, = —k,w,, where k; > 0). The equations of motion of the controlled satel-

lite become

k
W, = \MMQN — I)w,0; — NHQ:

k
Wy = wﬁw — INww; — mep

w3 = \Nuwﬁb — L)w,w; — HSQ

By choosing the square of the norm of the total angular momentum as a candi-
date Lyapunov function (i.e., V = Itw? + 13w} + I3w}), show that the origin
is globally asymptotically stable.

Investigate whether the following time-varying ¥ functions are positive definite
and decrescent. In each case, the number of state variables is two.

@ Vx,x,,0)=xt+ Q-+ e3)x3

®) Vixy, x5, 0 = e ¥(xt + x3)
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(©) V(x1,x2, 1) = x} + 1x3
d) V(xq,x2,80) = x} + (1 + sin? £)x3

9.11. Let the perturbation equations be described by

10.

11

—_
N

.W~ = X3
Xy = —cx; — g(xy1, X,

By choosing a V function as

H H X1
YHME&W + ax,x, +Maw +,‘. &(xy, OHxy dx,
0

where ¢ > a > 0, obtain the conditions that the function g(x,, f) must satisfy
so that the origin is uniformly, asymptotically stable.
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Appendix

MATRIX ALGEBRA

A matrix is defined as the assemblage of a set of numbers in a rectangular array
of rows and columns. The size of a matrix is m X n if it has m rows and n col-
umns, as shown in (A.1).

ay, ay, - a, |
Ay Gz " Qap
A=[a)=|" H (A1)
_Qmy Qmz Qmn_|

The subscripts of a general term a,; specify the position of the .RHB. The
first subscript is the row position and the second the column position. The
number of columns need not be equal to the number of rows.

A matrix having a single column is said to be a column matrix written as

@m 1
b1
B=2¢" (A2)
-
A matrix having a single row is called a row matrix, shown as
C=lec ¢z - ¢1l (A3)
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A square matrix has the same number of rows and columns.

A diagonal matrix is a square matrix having all its elements zero except
those on the leading diagonal. A unit matrix is a diagonal matrix whose diag-
onal elements are each equal to unity.

The transpose of a matrix is a matrix with the rows and columns inter-
changed from the original matrix:

ay; 4z 0 Oy
Ay2 Ayt Am
AT = | - : ’ (A4
_Q1n Qzn Ay |

A symmetrical matrix is a square matrix whose elements are symmetrical
about its leading diagonal. A symmetrical matrix is equal to its transpose:

a; = ay (A.5)
An antisymmetrical matrix is a square matrix whose elements are sym-

metrical but with opposite sign about its leading diagonal:
a; = —ay; (A.6)

A triangular matrix is a square matrix which has zero elements either
below or above the leading diagonal.

Two matrices can be added together or subtracted from each other only
when they have equal numbers of rows and columns. Each element of the
resultant matrix is equal to the addition or subtraction of the corresponding
elements of the two matrices. It follows that

;‘O“n?l_lwv G:HQ:I_I@:
mﬁUH}lwv &:”Q:I@:
The following rules hold true for matrix addition:

(A.7)

1. Commutative law:
A+B=B-+A.
2. Associative law:
A+-B+CO=A+B)+C.

3. The sum of the transposes of two matrices is equal to the transpose of
their sum.

4. Any square matrix can be broken into two parts, one symmetrical and
one antisymmetrical.

Two matrices A and B can be multiplied only when A has the same number
of columns as B has rows. The resultant matrix C has the same number of rows
as A and the same number of columns as B. We get

C=IC,ll=AXB= [a, )b, ] (A.3)
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The following rules hold true for matrix multiplication:

1. Premultiplication of A by B does not equal postmultiplication of A by B:

AXB#BXA (A9)

2. Distributive law:
AB -+ C) = AB + AC (A.10)

3. Associative law:
A(BC) = AB(C) (A.11)

4. The product of two transposed matrices is equal to the transpose of the
product of the original matrices in reverse order:

ATBT = (BA)' =C (A.12)

5. Any matrix A multiplied by a unit matrix I gives a product identical with
A:

Al =A (A.13)

There is no direct division of matrices. The operation of division is per-

formed by inversion; if
PQ =R (A.14)
then
Q=P R (A.15)

when P~ is called the inverse of matrix P. The requirements for obtaining a
unique inverse of a matrix are:

1. The matrix is a square matrix.
2. The determinant of the matrix is not zero (the matrix is nonsingular).

The inverse of a matrix is also defined by the relationship that
P'P=1I (A.16)

The following are the properties of an inverted matrix:

1. The inverse of a matrix is unique.
2. The inverse of the product of two matrices is equal to the product of the
inverse of the two matrices in reverse order:
(AB)"! = B 'A! (A.17)
3. The inverse of a triangular matrix is itself a triangular matrix of the same

type. .
4. The inverse of a symmetrical matrix is itself a symmetrical matrix.

5. The negative powers of a nonsingular matrix are obtained by raising the
inverse of the matrix to positive powers.
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6. The inverse of the transpose of P is equal to the transpose of the inverse
of P:

Pt =P )" (A.18)
Characteristic Equation and Eigenvalues

We consider a set of linear simultaneous equations in the form
AX = X (A.19)

where A is a square matrix, X is a column matrix, and A is a number.,
We can rewrite (A.19) as

a;, — 4 ay, R X
a1 a3, — 4 -+ a,, X3
. . . - L_p
 Gpyreeeeeeeg — 2 | |k,
or
A—IDX=0 (A.20)

A nontrivial solution of (A.20) can exist only when the determinant of
(A — AI) vanishes, or
[A—2I|=0 (A.21)
Equation (A.21) is called the characteristic equation. The roots Ay ., A, Of
the characteristic equation are called the eigenvalues of matrix A. When each
root is substituted back into (A.19), we obtain a set of linear equations which
are not all independent. By assuming value of one x, say x,and discarding one
equation we can solve for the values of other x’s. The column matrix obtained
by this procedure is called a characteristic vector or eigenvector. Thus, there is
one characteristic vector for each eigenvalue. Hence, only the direction of the
eigenvectors is obtained and their length is arbitrary and may be normalized
to unity. The following theorems are valid:

Theorem A.1. If a real matrix A has eigenvalues 2, and characteristic
vectors X,, then A” has the same eigenvalues A, but with characteristic vectors
Y, orthogonal to X;:

1 when i = j

(A.22)
0  whenizj

YIX, — ﬁ
where the vectors X and Y are normalized.
Theorem A.2. If a matrix A is symmetric and all its elements are real

numbers, then all its eigenvalues and characteristic vectors are real. Moreover,
the characteristic vectors are orthogonal to each other:
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1 when i = j

(A.23)
0 when i # j

Theorem A.3. The determinant of a matrix is equal to the product of all

its eigenvalues:
|Al= 24,4, - 4, (A.29)

Theorem A.4. The trace of a matrix which is the sum of the elements on
the leading diagonal of a matrix is equal to the sum of its eigenvalues:

ay, +ay,, + s Fa,=A A+ -+ 4, (A.25)

Theorem A.5. If the eigenvalues and characteristic vectors of matrix A
ar¢ A, and X,, then a matrix B = TAT~! has the same eigenvalues A, but charac-
teristic vectors equal to TX;, T being any nonsingular square matrix.
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Appendix B

VECTOR ALGEBRA
AND ANALYSIS

It is very advantageous to employ vector notation in dynamics. First, it permits
us to express many laws and formulas.in a form independent of the coordinate
system, and second, it facilitates a simple and compact description of many
relations and their manipulation. The forces, moments, displacements, veloc-
ities, accelerations, and other quantities of dynamics such as linear and angular
momenta are generally expressed by vectors in three-dimensional space. The
state variables, on the other hand, form an »n-dimensional vector space. Hence,
it is understood when dealing with state variables as in Chapter 9 that the
vector space is n-dimensional.

Definition B.1.  An n-dimensional complex vector g is an ordered n-tuple
of complex numbers (a,, a,, . . ., a,) which form an n-dimensional vector space.
If the ordered n-tuple (a,, a,, . . ., a,) admits only real numbers, then we define
an n-dimensional real vector a.

Definition B.2. The vectors g — (@, a,,...,a,)and b = (b1, byy...,b)
are said to be equal if and only ifa,=b,,a,=b,,...,a,=b,. The sum of
vectors @ = (a,,da,,...,a,) and b = (b,, b,, .. +»b,) is the vector a + b =

(ay +by,...,a,+b,). The product of a vector a = (a,, a,, ..., a,) and a scalar
number c is the vector ca = (cay, ca,, . . ., ca,).

339
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Laws of Vector Operation
Vector operations satisfy the following rules:

1. Commutative law: a + 5 = b + a.

2. Associative law: Am + wv +e=a+ @. + .m,v. R B

3. Distributive law: ¢(a + wv —= ca + cb and (c+ aom = ca + da, where ¢
and d are numbers.

4. anv = An&vmw 0d = 0, where 0 is called the zero vector or null vector;
c0=0.

5. The equality ca = 0 holds if and only if ¢ = 0 or a=0.

6. —(ca) = (—c)a = o(— a).

Definition B.3. The vectors a,, mp. Cees m» are said to be linearly
dependent if there exist numbers ¢y, . . ., ¢4, which are not all zero, such that
c;ay + cpa, + - +c.a, =0 (B.1)

If the vectors @, .- - a, are not linearly dependent, we say that they are linearly
independent.

Example B.1
The vectors mn =(1, —1,0), mn =(0, =2, 1), a3 = (2, 4, —3), are linearly dependent,
since . . R
2a; +(—3)a, + (—Da; =0
The vectors 7 = (1, 0, 0), J =1(0,1,0), k = (0,0, 1) are linearly independent.

Definition B.4. A vector g is said to be a linear combination of vectors
Ay ey a, if numbers c,, . . ., ¢, exist such that

a=ciay 4+ e+l (B.2)
Vectors ay, . . -, a,, are linearly dependent if and only if at least one of them
can be expressed as a linear combination of the others.

Example B.2
The vectors @; = (3,1,2), @, = (—1,0,2), a; =(7,2,2) are linearly dependent,

2

since 2a; — a, — a; = 0. From this equation it follows that

-

a, =4a, +4a;, ay=2a —a, a4, =126 —4a

so that each of them is a linear combination of the other two.

Definition B.S. The length of a vector a=(ay,ay, .. > a,) is the non-
negative number [a? + @} + -+ - + a}]'”? which is denoted by | a|ora. A xooﬁoH
whose length equals unity is called a unit vector. The terms modulus, magnitude,
norm, or absolute value of a vector are also used for the length of a vector.
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Three-dimensional Vectors

In the rest of this appendix we shall restrict ourselves to three-component
vectors, vectors in three-dimensional space. In rectangular Cartesian coordinate
system, we employ X, y, and z to represent the three coordinates. The linearly
independent unit vectors i = (1,0,0), j = (0, 1,0), and k = (0,0, 1) in the
directions x, y, and z, respectively, as shown in Fig. B.1 are called coordinate
vectors. In three-dimensional space, any four vectors are linearly dependent.

Figure B.1

Thus, every vector a = (a,, a,, a;) can be expressed as a linear combination of
the coordinate vectors i, j, and k as

a= Pw —+ anw -+ aum
Two linearly dependent vectors are called collinear (parallel). Two vectors aand
b are linearly dependent (parallel) if and only if one of them is a multiple of the

other; that is, there is a number ¢ such that a = cb. Three linearly dependent
vectors are called coplanar.

Definition B.6. The angle between two nonzero vectors a and b is the
angle (0 <{ 8 < 7) between the directed segments representing both vectors.

Scalar Product of Two Vectors

Definition B.7.  The scalar product or inner product or dot product of
two vectors a = (a,, a,,a;)and b = (b,, b,, b,), written as a - b, is defined by

a-b= ab, + a,b, + a;b, (B.3)

It can also be shown that

-

a-b=|al|b|cos b (B.4)

where | a | and | b | are the magnitudes, respectively, and @ is the angle between
the vectors.
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Example B.3

Using the definition of the scalar product, we obtain
i.i=1 j.j=1, k-k
N R (B.5)
i-j=0, J e k=0, k

Example B.4

We compute the angle between two vectors which are given by their components
a=2,1,2 and b = (1, —1, 4). We have

a.b _ 21) + 1(—=1) 4 2(4)

_m__m_ [22 + 12 + 221212 + (=12 + 422

cos B =

[0 % w

T
0= (B.6)

or

Perpendicular vectors. Two nonzero vectors 2 and b are perpen-
dicular if and only if a - b = 0.

Properties of scalar product of vectors. The scalar product of
vectors satisfies the relations:

-

b-a (i.e., it is commutative).
.¢c=ua-c+b- c (e, itis distributive).
la.

DL’Q\‘BL

Dl+ Sl
1% ”
~

1.
2.
3.

Definition B.8. The angles that a nonzero vector makes with the coor-
dinate vectors and thus with the coordinate axes are called the direction angles
and their cosines the direction cosines of the given vector.

Let o, §, and y be the direction angles of a nonzero vector a= (a;,a,, as).
The direction cosines obey the rules

1. cos @ = a,/|a|, cos B = a,/|al, cos y = as/| a| (B.7)
2. cos? @ -+ cos? f 4 cos?y =1

Vector Product

Definition B.9. The vector product or cross product or o_.:oa vnoacoﬂ of

vectors a = (ay, a,,a,) and b= (b,, b,, b,), denoted by a X b, is a vector
¢ defined by L
axb=c (B.3)
where ¢ is a vector perpendicular to both g and 3, is in the sense of a right-hand
screw, and has magnitude | a | 5| sin 6, as shown in Fig. B.2. Here, 0 is the angle

between a and b. The vector product @ X b may be written as

-

axb= (ab; — a;b,)7 + (ash, — ab)j + (ab, — QNFV\M
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T
Figure B2 0

This result is also obtained by the expansion of the determinant

- - -

i 7k
axb=|a, a, a, (B.9)
b, b, b,

Properties of vector product. The vector product satisfies the fol-
lowing relations:

[N =N

1. Tt is not commutative (i.e., a X b#=bxabutaxb=—b X a.
2. Ttis distributive [i.e, @ X (b + ¢)=a x b 4 a x c.

3. Itis boﬁ associative [i.e., @ X (b X Mv #* Am X wv x cl.

4. ka x b = k(a x b), where k is a scalar number.

Example B.5
The vector product of two linearly dependent vectors is the zero vector. Hence, it
follows that

a

ixi=0, jxj=0 kxk=0 (B.10)
Also, it can be seen that
Ixj=k Jxk=7, kxi=7J (B.11)

Mixed Product

Uo.mmu.m,:m,__ B.10. The mixed product or triple scalar product of three

vectors a, b, ¢ is a scalar denoted by a - @ X qV The mixed product of three
vectors is also sometimes called a trivector.

Properties of mixed product. The mixed product satisfies the fol-
lowing relations:

a-(Bxc)=b-(cxa)=c-(axb)
nla.Qxsni?@xynlw.axv
a a 4as B
—|b, b, b, (B.12)

Cy Cy C,
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Derivative of a Vector

Definition B.11. In dynamics we deal with vectors whose components
are functions of a scalar variable t. Thus, for every value of ¢ in the domain
under consideration we get, in general, a different vector. We deal with a vector
field and denote the vector by a(f). The derivative of ms with respect to
is defined by

d=oy  noalt + A — a()
t a(f) = wmw At

— a@) (B.13)
Similarly, we can define higher derivatives. For example,

a(t + >>NW —a®) _ 50 (B.14)

2 .
—=a(f) = lim
PV lim

The components of a vector can in general be functions of several variables.
The corresponding partial derivatives can be defined in a similar manner.

Rules of vector differentiation. It can be shown that

1. %M\Anmv = ca + ¢a, where c is a scalar function of 1.

&L LJV N
2. MAmlTSlmlT@

[N

&I’ Ll’hr' -.V
3. 4@ -B)y=a-b+a-b.

Ql

4. %Amx B)=axb+axb.
Gradient of a Scalar Function

Definition B.12. Let a scalar field « be defined in a certain domain of
space. The gradient of the given scalar field « is defined by

grad u = Vu (B.15)
where V is called the nabla operator or “del” and is defined in the following
with respect to a chosen coordinate system. The gradient of a scalar function

is a vector whose magnitude and direction give the maximum space rate of
increase of the function.

Figure B.3 illustrates the three commonly employed coordinate systems:
the Cartesian coordinate system x, y, z; the cylindrical coordinate system r, 8,
z; and the spherical coordinate system p, @, 8. In the Cartesian coordinate
system, we have

(B.16)

N

= % —
V=ig itk

e
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~N

n

¢ o
z

0
y
.
]
Figure B.3 X
and in that system it follows that
8 du-> , du= |, duz
mBa:\d:l L +m€.\ +mnw (B.17)

In cylindrical coordinates, x = r cos % y = rsin 8, and z = z, which yields

& du- 1 Ju- duy
mnma:IQ:\mx +ﬂww;+mn (B.18)

where w: .N.,s and k are the unit coordinate vectors. In spherical coordinates,
x=psingcos§, y= psin¢sinf, and z = p cos ¢, and we obtain

& du-~ 1 du- 1 du=

— < = .
grad u u= QEN n_ubm& sn_]bm_bﬁmw; (B.19)
where 7 » 14, and i, are the unit coordinate vectors.

Properties of gradient. The gradient obeys the following rules:

1. grad (w, +u, + +-- +u,) =grad u;, + gradu, + - -
2. grad (uv) = ugrad v + v grad u.
3. grad f() = f'(1) grad u.

For a vector field F(x, y, z) given in a region, if there exists a function u(x, y, z)
in this region such that

- + grad u,.

F(x, y,2) = grad u(x, , 2) (B.20)
then this vector field is called irrotational or conservative and u is called the
scalar potential. In an irrotational field, the work done by the force F = grad u
along a curve C connecting two points 4 and B of this field does not depend on
the path of this curve. In particular the work done along a closed curve is zero.

Divergence of a Vector

Definition B.13. Let u be a vector field defined in a certain domain of
space. The divergence of this vector field, denoted by div u, is defined by

Y -

divu =V -u (B.21)
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Hence, the divergence of a vector field is a scalar. In the Cartesian coordinate
system, we get

[y

divii = V. u= 9% Gus

mx dz

where u,, u,, and u; are the components of u in the directions x,y, and z,
respectively. In cylindical oooamnmﬁor we obtain

+ &: + (B.22)

=N Y

divie =V =1 ?3:+ L dug | Ou

30 =+ %N (B.23)

In spherical coordinates, we obtain
Ca 4 o 1 du
=V. 9
divu u = N mb@ u,) -+ b sin & me@e sin @) + osn G 90 (B.29)

Properties of divergence. The divergence of a vector obeys the
following rules:

1. div (a2 + ) = div a + div b.
2. div (ua) = u div a + a grad u.
Curl of a Vector
Definition B.14. Let # be a vector field aomwoa in a certain domain of
space. The curl of this vector field, denoted by curl », is defined by
curlu =V x u (B.25)

Sometimes, the symbol rot u is also used for curl . In Cartesian coordinates,
we have

curlu =V x u

(B.26)

In cylindical coordinates, the components of curl % in the direction r, 8, and z,
respectively, are given by
1 0u, dug du, Ou,
r d8 oz dz ar
In spherical coordinates, the components of curl
respectively, become

1 du,
ar gy (o) — r a6
1% in

the direction p, ¢, and 6,

19
.
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h mwb &_HW]NM o I\A:m sin ﬁvu_

1 1 du,
]lblﬁahe:mv T sin %90

{33~ el

Properties of curl. The curl of a vector obeys the following rules:

1. curl (a + wv = curl @ + curl &
2. curl A:mv =ycurla — a x grad u.

Laplacian Operator

Definition B.15. The scalar product of the operator V with itself yields
a scalar operator call the Laplacian and denoted by V2 (i.c., VZ = v. 5 The
Laplacian of a scalar function u can then be obtained in Cartesian coordinates
X, y, and z as

. Pu Bu
Viu=Gatge ™t - (B.27)

in cylindical coordinates r, 8, and z as

<N:HFWAx@V +an|+

r dr\ Or gz (B.28)

Q.:‘Q.:
(3]
i

and in spherical coordinates p, ¢, and 8 as

NiwaN@v 1 mA v 1 1 9
Viu= prap P dp + ptsin e dad sm e ap p? sin? ¢ d0* (B.29)
For further study of vector analysis and theorems of Gauss, Green, and Stokes,

the reader should consult books on mathematics such as those given in refer-
ences [1-3].
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Appendix C

ANSWERS TO SELECTED
PROBLEMS

CHAPTER 2
2.1. 12.1 km/h at 54.37° east of north 2.2, (1) ar = (Bx + Jy + £2)/(x2 + y? 4 12172
2.3. (a) @& = \I\LNSOE:J? (b) 3, = —raosinb| 1+ - cos 8 =i

AU — sin2 Qv A\) — sin2 @v

Ns By = (ucos 8 + wolL sin )7 + (usin @ — wo(R + L cos 8))j

= 2wo usin § — w¥(R -+ L cos Sf — Qo ucos 8 + w} Lsin mv\
Nm a, = —wiby7 + (Qawove — Sm@_:
29, 4 — Tm.o? + 16.58F — 19.76k) x 103 m/s2

CHAPTER 3

2
o S 2ck? + g + 2cwix?) +%2mm:wno

3.1 mE — wix) + ————
mE — wjx) 1+ 4’ (1 + dcix?)'?

where .2 5 2 12
2cmixc + mg + 2cmwpx N
N = i g o), Aswew»‘_

1 + dc*x
3.2. max P = (m1 + ma)g(u1 + 42)
3.3. Velocity = — —2__y; Distance = — —22__d
my + ma my -+ may

_Fw?mhn -+ 2ma? wlrghn + ma?
34. @) of = ———790; ) A L2 + ma vem - H||Meo

RN VIR —ML?

o ML2 -+ 2m T pML* + -

2
35, a\w 4+ ¥y 39. e = 0.549
rg ﬁew
c

348

App. C Answers to Selected Problems 349

CHAPTER 4

A~ mnHEAxooﬁmlxﬁc ~+ exw_:?
= (@R cos § — w’Rsin§ — GR)i + (w?R cos 6 + @R sin S\

i:nnn inertial coordinates are used «59 x horizontal m:a \< vertical.

4.2. 116,992.7; 150,000; 253,007.4 I:%:hw — Ima®)w} cos B sin 8 — imgL sin m;

44. F= —mwili + mgj — sm:t« § = 5 m3R? + h¥é1j — ImR2w10:k

where L is the distance from 0 8 disk center and / is the disk thickness.

4.5. gsin 8 = w§L(}cosb + 5 sin §cos §) 4.8. 8 = 55.15°

CHAPTER 5

51. @ x =0orw = mmw for any x 5.3. See answer to problem 3.1.
5.4. (my + mp)x + SN%OOm 6 — mbb2sin@ + uNsgnx =P

mqbi cos 8 + mab28 + maghsin® =0

where N = my g -+ ma(b§% + g cos @ — i sin @) cos 8

Note that the first equation is equivalent to (3.26).

5.6. (a) sin 8 dx IOOm%S\LwW&% —0; () mi=2Asin@; my = —Acos@; 1§ =

o
Nj o

57. #1cosa + 3%y = gsina; (my + ma)¥y + me¥2cosa -+ uNysgnxy = F(t)
where N1 = (m1 + my)g — maizsina
mabcos 8

. _mab?  mpbcos@ 4 mi1 + my
5.10. x = >Em\|> p2; 0 A P11+ A P2
b b ¢}
pr= —uNsgn A‘:M E_IiwlbooWluuv.fw

p2 = —mabsin QT + %?5%.5 — mabcos 0 pr)(—mabcos O py -+ (my -+ SNVEL

where A = myb2(my + my sin2 §)

CHAPTER 6

6.1. (a) Global existence and uniqueness

(b) Local existence and uniqueness in any finite region not containing the x; axis which is a
singular region.

o o =

6.2. 11 =1ty + 6.5. ®(r) =

kQ&

o - O O

0
0
t
1

O O = ™

0
where x, %, y and y are chosen as state variables.
2v3 sin & cos &

g

~ -3
10 Z(—ee) 0

Range = x¢ +

0 1 S48l —car—ees) 1
C3

6.6. ®¥(r) =
0 0 e~est 0
00 \m: —e-est) 1
where ¢c3 = \Dum c4 = %

A = maRcos2a — 3) — 3Im
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1 0 0
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CHAPTER 8

8.1. w = 27.2 rad/s T=0231s

8.2. Steady state vertical motion is given by

g = 3[1 —0.9sin(10.18 t — 41%)] cm

8.3. (b) E_e_ = 0.5237k[m; wy = 1.2518k/m; w3 = 2.1594/k]m
1 1

[®] = 1.863 1.2175 —.3305

2.566 —2.155 .09
14.53 .0 0 3.98 0 0
(2) [M*] = 0 8.61 0 [K*] = 0 1347 0
0 0 1.227 0 0 572

0.262 0.341 0.903
1

@ Enﬁ 0.489  0.415 —0.298
0.673 —0.734  0.0813

!

8.5. w = 2.159k/m; (¢} = {—0.3305

R .09 ;
8.7. miy + kxy + 2k(x1 — x2) = 0; Bmiy 4 2k(xy — x1) =0

m 0 3k —2k
M] = ; =
M) T mL [X] ﬁ\? NL

CHAPTER 9

9.1. Lyapunov stability theory cannot be employed.
9.2. (a) x1 = constant, x2 = +nr(n =0,1,2,...), x; = 0, x4 = 0; (b) unstable

App. C

93. () k> LM g4 @r=a+780=dmn=01,2..)p=0p=0

2 b
9.5. (a) Sign indefinite; (b) Positive semidefinite
9.6. Equilibrium zone is globally, asymptotically stable,
9.7. Equilibrium zone is globally stable.
9.10. (c¢) Not positive definite; (d) Positive definite, and decrescent

INDEX

A

Acatastatic system, 122
Acceleration:
absolute, 3, 29
angular, 33
centripetal, 29
Coriolis, 29
of earth’s surface, 36
relative to rotating coordinates, 29
relative to translating coordinates,
10
Angular displacement, 21
Angular momentum, 53
conservation of, 63
of rigid body, 85
of system of particles, 55
translation theorem, 90
Angular velocity, 25
of the earth, 36
in terms of body axes, 25

Apocentron, 68
Apogee, 71
Apsis, 68
Areal velocity, 65
Asymptotic stability, 288
of linear autonomous systems, 304
orbital, 296
uniform, 294
Autonomous system, 175
linear, 179
nonlinear, 175, 287
state transition matrix for linear,
179

Balancing of rotor, 100

Barbashin and Krasovskii’s theorem,
312

Bernoulli, J., 124, 126

351
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Binormal, 13
Block diagram, 254
Bode diagram, 256
Body axes, 79

Cc

Calculus of variations, 134
Canonical or normal state variables,
184

Cartesian coordinates, 9
Catastatic system, 122
Celestial mechanics, 67
Center of mass:

of a rigid body, 85

of a system of particles, 49
Central differences predictor, 201
Central force, 64
Centrifugal force, 70
Centripetal acceleration, 29
Characteristic equation, 185, 337

eigenvalues, 185

roots, 185
Coefficient of viscous friction, 235
Complementary Kronecker delta, 48
Configuration space, 146
Conic in polar coordinates, 68
Conservation:

of angular momentum, 63

of energy, 60, 106

of linear momentum, 50
Conservative force, 60
Conservative system, 60
Constraint, 121

holonomic, 122

inequality, 124

kinematical, 120

nonholonomic, 122

scleronomic, 122
Constraint force, 48, 126, 139
Convolution integral, 194

Index

Coordinates:
body, 79
generalized, 120
independent, 120
inertial, 3, 9
Coordinate system:
Cartesian, 9
cylindrical, 16
inertial, 3, 9
normal and tangential, 12
polar, 15
spherical, 145
Coordinate transformation:
rotational, 18
similarity, 183
Coriolis acceleration, 29
Coulomb friction, 45
Curl of a vector, 346
Cylindrical coordinates, 16

D

D’Alembert’s principle, 127, 131
Damping coefficient, 235
Damping ratio, 236
Dampled vibrations:
multi-degree-of-freedom system,
273, 276
single-degree-of-freedom system,
241, 246, 252
Decibel, 256
Decrement, logarithmic, 182
Decrescent function, 325
Degeneracy, 188
Degrees of freedom, 120
of a rigid body, 78
of a system of particles, 120
Determinant, 185
Diagonalization of matrices, 186
Direction cosines, 19
Direct method of Lyapunov, 306

Index

Displacement, 57, 125
true, 125
virtual, 125
Dissipative function, 142
Divergence of a vector, 345
Domain of attraction, 310
Dynamics:
classical, 1
Lagrangian, 6, 119
Newtonian, 4
relativistic, 2

E

Eccentricity, 68
Effective force, 127
Eigenvalue problem, 337
Eigenvalues, 185
Eigenvectors, 185
Einstein’s theory of relativity, 2
Elliptic orbit, 70
Energy:

balance in vibrations, 250

conservation, 61

kinetic, 57

potential, 60

total mechanical, 61
Equations of motion:

of Euler, 97, 154

of Hamilton, 147

of Lagrange, 131

of Newton, 42, 48, 95

of a particle, 42, 43

of a rigid body, 95, 151

of a system of particles, 48
Equilibrium state, 175

equations of, 175

stability of, 290, 315
Equilibrium zone, 176, 178
Escape velocity, 69
Euclidean space, 2, 163

353

Euler’s angles, 111, 152

Euler’s equations of motion, 96, 154

Existence and uniqueness theorem,
164

Explicit methods, 201

Extended principle of virtual work,
127

F

First approximation:
Lyapunov’s theorems, 297, 304
stability, 297, 303
First integrals of motion, 315
Floquet’s theory, 329
Force:
central, 64
centrifugal, 70
conservative, 60
constraint, 48, 126, 139
dissipative or frictional, 141
effective, 127
generalized, 131
gravitational, 5
impressed, 126
inertia, 30, 127, 132
internal, 48
nonconservative, 141
Forced vibrations, 246
multi-degree-of-freedom system,
273, 276
single-degree-of-freedom system,
246, 252
Fourier series, 251
Freedom, degrees, of, 120
Free vibrations, 234
multi-degree-of-freedom system,
267
. single-degree-of-freedom system,
238
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Frequency:
damped natural, 242
natural, 236

Frequency response methods, 252,

276

Friction:
Coulomb, 45
viscous, 141

Function:
decrescent, 325
Lyapunov, 310
negative definite, 307
negative semi-definite, 307
positive definite, 307
positive semi-definite, 307
quadratic, 308
sign indefinite, 307

G

Galilean reference frame, 3
Generalized coordinates, 120
Generalized force, 131
Generalized momenta, 147
Generation of Lyapunov function,
321, 329

Global existence and uniqueness, 165
Gradient of a scalar, 344
Gravitation, 5

constant, 5, 36

Newton’s law, 5
Green'’s function, 173
Gyroscope, 109

H

Hamtltonian, 148

Hamilton’s canonic equations, 147
for holonomic systems, 149
for nonholonomic systems, 149

Index

Hamilton’s principle, 219
Hill’s equation, 328
Holonomic system, 122
Houbolt method, 207
Hyperbolic trajectory, 69

Identification from frequency
response, 258

Identity or unit matrix, 335
Implicit method, 201
Impulse:

angular, 108

linear, 62
Impulse-momentum principle, 108
Inequality constraints, 124
Inertia:

force, 30

matrix, 87

moments of, 86

products of, 86
Inertial coordinates, 3, 9
Initial value problem, 164
Instability, 288

theorem of Lyapunov, 321
Integral of motion, 315
Inverse square law of gravitation, 5
Isolated equilibrium states, 175

J

Jacobian matrix, 171
Jordan normal form, 189

K

Kepler’s laws, 70
Kinematics, 4, 8
of rigid body, 79

Index

Kinetic energy:
of a particle, 57
of rigid body, 104
rotational, 105
of a system of particles, 58, 133
translational, 105
Kinetics, 4
Kronecker delta, 48

L

Lagrange multipliers, 139
Lagrange’s equations of motion, 131
alternative forms, 141
for holonomic conservative
systems, 141
for holonomic systems, 132
for nonholonomic systems, 139
for rigid bodies, 151
Lagrange’s theorem, 322
Lagrangian, 141
Lagrangian dynamics, 6
Laplace transformation, 179
Laplacian operator, 347
Lasalle’s theorem, 311
Leibnitz’s rule, 174
Limit cycle, 291
stability, 295-96
Linearized equations, 170, 175
Linearly independent vectors, 340
Linear momentum, 42
conservation, 50
of rigid bodies, 85
of system of particles, 50, 55
Linear systems:
with periodic coefficients, 327-28
response, 172, 179
stability of autonomous, 298, 318
state transition matrix, 174, 179
Liouville-Neumann series, 168
Lipschitz condition, 165
Lipschitz constant, 165

355

Local existence and uniqueness, 164
Logarithmic decrement, 182

Mass:
center of a rigid body, 85
center of a system of particles, 49
Mathieu’s equation, 327
Matrix:
characteristic equation, 337
diagonalization, 186
of direction cosines, 19
exponential, 180, 183
identity, 335
inertia, 87
inverse, 336
negative definite, 308
nonsingular, 336
positive definite, 308
rotational transformation, 21
similar, 184
state transition, 173, 179
symmetric, 335
transpose, 335
Mechanical energy, 61
Mechanics, quantum, 1
Mixed product, 343
Modal decomposition, 267
Modified Euler equations of motion,
97
Moment of a force, 54
Moment of inertia, 86
principal, 91
Moment of momentum, 53, 55, 85
Momentum:
angular, 53
conservation, 50
linear, 42
of a rigid body, 85
of a system of particles, 50, 55
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Motion:
relative to the rotating earth, 34
relative to translating frame, 10
relative to translating and rotating
frame, 28
Motion space, 164
Multipliers of Lagrange, 139

Natural frequency, 236
Negative definite function, 307
Negative semi-definite function,
307
Newmark beta method, 210
Newtonian dynamics, 4
Newton’s laws, 4, 5
Nonautonomous system:
linear with periodic coefficients,
327-28
stability, 303, 325
state transition matrix for linear,
174
Nonconservative system, 60
Nonholonomic system, 122
Nonlinear dynamic system, 221
Norm, Euclidean, 2, 163
Normal and tangential coordinates,
12
Null solution, 287
Nutation, 110

(o)

Orbital stability, 296

Orbits of planets and satellites, 67
eccentricity of, 68

Orthogonal transformation, 19, 192

Orthonormal transformation, 19

Osculating plane, 13

Overdamped, 181

Index

P

Parabolic orbit, 69
Parallel axes theorem, 88
Park stiffly stable method, 212
Particle, 1, 41
Pendulum:
simple, 316
spherical, 145
spring, 143
Pericentron, 68
Perigee, 71
Period of vibration, 242
Perpendicular vectors, 342
Perturbed motion, 171
differential equations of, 171, 286
Pfaffian form, 121
Phase angle, 239
Phase space, 163
Picard’s method, 168
Plane of symmetry, 93
Poincaré stability, 296
Polar coordinates, 15
Positive definite:
function, 307
matrix, 308
Positive semi-definite function, 307
Potential energy, 60
Precession, 103, 110
Principal axes, 91
Principal moments of inertia, 91
Principle:
of conservation of energy, 61
of d’ Alembert, 127, 131
of Hamilton, 129
of impulse-momentum, 62
of virtual work, 124
of work and energy, 58
Products of inertia, 86

Q

Quadratic function, 308
Quantum mechanics, 1

Index

R

Rayleigh’s dissipation function, 142
Reference frame:
inertial or Galilean, 3, 9
noninertial, 10, 20
rotating, 20
Relativistic dynamics, 3
Rheonomic system, 122
Rigid body, 2
angular momentum, 85
equations of motion, 95, 151
kinematics, 79
kinetic energy, 104, 154
linear momentum, 85
Roots of characteristic equation, 337
Rotating coordinate system, 20
Rotational transformation of
coordinates, 18
Rotation of coordinates:
finite, 18
infinitesimal, 24
matrix, 24
Routh’s criterion, 298
Runge-Kutta method, 203

S

Satellite orbit, 67
Scalar product of vectors, 341
Scheronomic system, 122
Second method of Lyapunov, 306,
325
Self-excited vibrations, 234
Sgn function, 45
Similarity transformation, 184
Simple pendulum, 316
Space:
configuration, 416
Euclidean, 2
Phase, 163
state, 163

357

Spherical coordinates, 145
Spherical pendulum, 145
Spin, 103, 110
Stability:
autonomous systems, 297, 306
global, 312
Lyapunov, 288
nonautonomous systems, 303, 325
orbital, 296
Poincaré, 296
uniform, 294
State space, 163
State transition matrix, 173
linear time-invariant, 179
linear time-varying, 174
State variables, 43, 162
formulation, 43, 99, 146
representation, 162
Stationary motion, 178
Stiffness matrix, 265
Sylvester’s theorem, 308
System:
autonomous, 175, 287
conservative, 60
holonomic, 122
nonautonomous, 287
nonholonomic, 122
System of particles:
angular momentum, 55
center of mass, 49
kinetic energy, 58, 133
linear momentum, 50, 55
System of rigid bodies, 111

T

Tangential and normal coordinates,
12

Top, 155

Torque (see Moment)

Torsional vibrations, 235

Tractor-semitrailer, 112
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Trajectory in state space, 164
Transfer function, 253
Transformation of coordinates:
rotational, 18
similarity, 184
Transient response, 170-94
Translation theorem for angular
momentum, 90
Transpose of matrix, 335
Trapezoidal rule, 203
Trivial solution, 287
Two-body central force motion, 64
Two-cycle iteration, 203

u
Unbalanced disk, 100

Underdamped system, 181, 235, 267
Uniform stability, 294

v

Van der Pol’s equation, 291
Variational principles, 119

Index

Vector analysis, 339
Velocity:
angular, 25
areal, 65
escape, 69
relative, 11, 27
Vibration absorber, 277
Vibration isolation, 260
Vibrations:
classification, 234
forced vibrations, 234, 246
free vibrations, 234, 238,
267
Virtual work, 124
Volterra integral equation, 168

W

Wilson theta method, 208

Work, virtual, 124

Work—energy principle, 58,
104

Work of a force, 57, 129
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